| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tbw-ax4 | 
							⊢ ( ⊥  →  ⊥ )  | 
						
						
							| 2 | 
							
								
							 | 
							tbw-ax1 | 
							⊢ ( ( 𝜓  →  ⊥ )  →  ( ( ⊥  →  ⊥ )  →  ( 𝜓  →  ⊥ ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							tbwlem1 | 
							⊢ ( ( ( 𝜓  →  ⊥ )  →  ( ( ⊥  →  ⊥ )  →  ( 𝜓  →  ⊥ ) ) )  →  ( ( ⊥  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ( 𝜓  →  ⊥ ) ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							⊢ ( ( ⊥  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ( 𝜓  →  ⊥ ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							ax-mp | 
							⊢ ( ( 𝜓  →  ⊥ )  →  ( 𝜓  →  ⊥ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							tbwlem1 | 
							⊢ ( ( ( 𝜓  →  ⊥ )  →  ( 𝜓  →  ⊥ ) )  →  ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ax-mp | 
							⊢ ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							tbw-ax1 | 
							⊢ ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							tbwlem1 | 
							⊢ ( ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) ) )  →  ( ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ( ( 𝜓  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							ax-mp | 
							⊢ ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							tbwlem2 | 
							⊢ ( ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( ( ( 𝜑  →  ⊥ )  →  𝜑 )  →  𝜑 )  →  ( ( 𝜓  →  ⊥ )  →  𝜑 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							tbwlem3 | 
							⊢ ( ( ( ( ( 𝜑  →  ⊥ )  →  𝜑 )  →  𝜑 )  →  ( ( 𝜓  →  ⊥ )  →  𝜑 ) )  →  ( ( 𝜓  →  ⊥ )  →  𝜑 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							tbwsyl | 
							⊢ ( ( ( 𝜑  →  ⊥ )  →  ( ( 𝜓  →  ⊥ )  →  ⊥ ) )  →  ( ( 𝜓  →  ⊥ )  →  𝜑 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							tbwsyl | 
							⊢ ( ( ( 𝜑  →  ⊥ )  →  𝜓 )  →  ( ( 𝜓  →  ⊥ )  →  𝜑 ) )  |