Metamath Proof Explorer


Theorem tbwsyl

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses tbwsyl.1 ( 𝜑𝜓 )
tbwsyl.2 ( 𝜓𝜒 )
Assertion tbwsyl ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 tbwsyl.1 ( 𝜑𝜓 )
2 tbwsyl.2 ( 𝜓𝜒 )
3 tbw-ax1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) ) )
4 1 3 ax-mp ( ( 𝜓𝜒 ) → ( 𝜑𝜒 ) )
5 2 4 ax-mp ( 𝜑𝜒 )