Step |
Hyp |
Ref |
Expression |
1 |
|
tcid |
β’ ( π΄ β π β π΄ β ( TC β π΄ ) ) |
2 |
|
sseq0 |
β’ ( ( π΄ β ( TC β π΄ ) β§ ( TC β π΄ ) = β
) β π΄ = β
) |
3 |
2
|
ex |
β’ ( π΄ β ( TC β π΄ ) β ( ( TC β π΄ ) = β
β π΄ = β
) ) |
4 |
1 3
|
syl |
β’ ( π΄ β π β ( ( TC β π΄ ) = β
β π΄ = β
) ) |
5 |
|
fveq2 |
β’ ( π΄ = β
β ( TC β π΄ ) = ( TC β β
) ) |
6 |
|
tc0 |
β’ ( TC β β
) = β
|
7 |
5 6
|
eqtrdi |
β’ ( π΄ = β
β ( TC β π΄ ) = β
) |
8 |
4 7
|
impbid1 |
β’ ( π΄ β π β ( ( TC β π΄ ) = β
β π΄ = β
) ) |