Metamath Proof Explorer


Theorem tc00

Description: The transitive closure is empty iff its argument is. Proof suggested by GΓ©rard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)

Ref Expression
Assertion tc00 ( 𝐴 ∈ 𝑉 β†’ ( ( TC β€˜ 𝐴 ) = βˆ… ↔ 𝐴 = βˆ… ) )

Proof

Step Hyp Ref Expression
1 tcid ⊒ ( 𝐴 ∈ 𝑉 β†’ 𝐴 βŠ† ( TC β€˜ 𝐴 ) )
2 sseq0 ⊒ ( ( 𝐴 βŠ† ( TC β€˜ 𝐴 ) ∧ ( TC β€˜ 𝐴 ) = βˆ… ) β†’ 𝐴 = βˆ… )
3 2 ex ⊒ ( 𝐴 βŠ† ( TC β€˜ 𝐴 ) β†’ ( ( TC β€˜ 𝐴 ) = βˆ… β†’ 𝐴 = βˆ… ) )
4 1 3 syl ⊒ ( 𝐴 ∈ 𝑉 β†’ ( ( TC β€˜ 𝐴 ) = βˆ… β†’ 𝐴 = βˆ… ) )
5 fveq2 ⊒ ( 𝐴 = βˆ… β†’ ( TC β€˜ 𝐴 ) = ( TC β€˜ βˆ… ) )
6 tc0 ⊒ ( TC β€˜ βˆ… ) = βˆ…
7 5 6 eqtrdi ⊒ ( 𝐴 = βˆ… β†’ ( TC β€˜ 𝐴 ) = βˆ… )
8 4 7 impbid1 ⊒ ( 𝐴 ∈ 𝑉 β†’ ( ( TC β€˜ 𝐴 ) = βˆ… ↔ 𝐴 = βˆ… ) )