Step |
Hyp |
Ref |
Expression |
1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
2 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
3 |
1 2
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
4 |
|
trss |
⊢ ( Tr 𝑥 → ( 𝐴 ∈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
5 |
4
|
imdistanri |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
6 |
5
|
ss2abi |
⊢ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
7 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ) |
8 |
6 7
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
9 |
3 8
|
eqsstri |
⊢ ( TC ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
10 |
1
|
elintab |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → 𝐴 ∈ 𝑥 ) ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) → 𝐴 ∈ 𝑥 ) |
12 |
10 11
|
mpgbir |
⊢ 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
13 |
1
|
snss |
⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ { 𝐴 } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ) |
14 |
12 13
|
mpbi |
⊢ { 𝐴 } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
15 |
9 14
|
unssi |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
16 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
17 |
|
elun2 |
⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
18 |
16 17
|
ax-mp |
⊢ 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
19 |
|
uniun |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ( ∪ ( TC ‘ 𝐴 ) ∪ ∪ { 𝐴 } ) |
20 |
|
tctr |
⊢ Tr ( TC ‘ 𝐴 ) |
21 |
|
df-tr |
⊢ ( Tr ( TC ‘ 𝐴 ) ↔ ∪ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ) |
22 |
20 21
|
mpbi |
⊢ ∪ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) |
23 |
1
|
unisn |
⊢ ∪ { 𝐴 } = 𝐴 |
24 |
|
tcid |
⊢ ( 𝐴 ∈ V → 𝐴 ⊆ ( TC ‘ 𝐴 ) ) |
25 |
1 24
|
ax-mp |
⊢ 𝐴 ⊆ ( TC ‘ 𝐴 ) |
26 |
23 25
|
eqsstri |
⊢ ∪ { 𝐴 } ⊆ ( TC ‘ 𝐴 ) |
27 |
22 26
|
unssi |
⊢ ( ∪ ( TC ‘ 𝐴 ) ∪ ∪ { 𝐴 } ) ⊆ ( TC ‘ 𝐴 ) |
28 |
19 27
|
eqsstri |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( TC ‘ 𝐴 ) |
29 |
|
ssun1 |
⊢ ( TC ‘ 𝐴 ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
30 |
28 29
|
sstri |
⊢ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
31 |
|
df-tr |
⊢ ( Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ↔ ∪ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
32 |
30 31
|
mpbir |
⊢ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
33 |
|
fvex |
⊢ ( TC ‘ 𝐴 ) ∈ V |
34 |
|
snex |
⊢ { 𝐴 } ∈ V |
35 |
33 34
|
unex |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ V |
36 |
|
eleq2 |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
37 |
|
treq |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( Tr 𝑥 ↔ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) → ( ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∧ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) ) |
39 |
35 38
|
elab |
⊢ ( ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝐴 ∈ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∧ Tr ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) ) |
40 |
18 32 39
|
mpbir2an |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |
41 |
|
intss1 |
⊢ ( ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ∈ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) ) |
42 |
40 41
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) |
43 |
15 42
|
eqssi |
⊢ ( ( TC ‘ 𝐴 ) ∪ { 𝐴 } ) = ∩ { 𝑥 ∣ ( 𝐴 ∈ 𝑥 ∧ Tr 𝑥 ) } |