| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tc2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | tcvalg | ⊢ ( 𝐴  ∈  V  →  ( TC ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( TC ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 4 |  | trss | ⊢ ( Tr  𝑥  →  ( 𝐴  ∈  𝑥  →  𝐴  ⊆  𝑥 ) ) | 
						
							| 5 | 4 | imdistanri | ⊢ ( ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 )  →  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) ) | 
						
							| 6 | 5 | ss2abi | ⊢ { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ⊆  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 7 |  | intss | ⊢ ( { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ⊆  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) }  →  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) }  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) }  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 9 | 3 8 | eqsstri | ⊢ ( TC ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 10 | 1 | elintab | ⊢ ( 𝐴  ∈  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ↔  ∀ 𝑥 ( ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 )  →  𝐴  ∈  𝑥 ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 )  →  𝐴  ∈  𝑥 ) | 
						
							| 12 | 10 11 | mpgbir | ⊢ 𝐴  ∈  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 13 | 1 | snss | ⊢ ( 𝐴  ∈  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ↔  { 𝐴 }  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 14 | 12 13 | mpbi | ⊢ { 𝐴 }  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 15 | 9 14 | unssi | ⊢ ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ⊆  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 16 | 1 | snid | ⊢ 𝐴  ∈  { 𝐴 } | 
						
							| 17 |  | elun2 | ⊢ ( 𝐴  ∈  { 𝐴 }  →  𝐴  ∈  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ 𝐴  ∈  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) | 
						
							| 19 |  | uniun | ⊢ ∪  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  =  ( ∪  ( TC ‘ 𝐴 )  ∪  ∪  { 𝐴 } ) | 
						
							| 20 |  | tctr | ⊢ Tr  ( TC ‘ 𝐴 ) | 
						
							| 21 |  | df-tr | ⊢ ( Tr  ( TC ‘ 𝐴 )  ↔  ∪  ( TC ‘ 𝐴 )  ⊆  ( TC ‘ 𝐴 ) ) | 
						
							| 22 | 20 21 | mpbi | ⊢ ∪  ( TC ‘ 𝐴 )  ⊆  ( TC ‘ 𝐴 ) | 
						
							| 23 | 1 | unisn | ⊢ ∪  { 𝐴 }  =  𝐴 | 
						
							| 24 |  | tcid | ⊢ ( 𝐴  ∈  V  →  𝐴  ⊆  ( TC ‘ 𝐴 ) ) | 
						
							| 25 | 1 24 | ax-mp | ⊢ 𝐴  ⊆  ( TC ‘ 𝐴 ) | 
						
							| 26 | 23 25 | eqsstri | ⊢ ∪  { 𝐴 }  ⊆  ( TC ‘ 𝐴 ) | 
						
							| 27 | 22 26 | unssi | ⊢ ( ∪  ( TC ‘ 𝐴 )  ∪  ∪  { 𝐴 } )  ⊆  ( TC ‘ 𝐴 ) | 
						
							| 28 | 19 27 | eqsstri | ⊢ ∪  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ⊆  ( TC ‘ 𝐴 ) | 
						
							| 29 |  | ssun1 | ⊢ ( TC ‘ 𝐴 )  ⊆  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) | 
						
							| 30 | 28 29 | sstri | ⊢ ∪  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ⊆  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) | 
						
							| 31 |  | df-tr | ⊢ ( Tr  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ↔  ∪  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ⊆  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) | 
						
							| 32 | 30 31 | mpbir | ⊢ Tr  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) | 
						
							| 33 |  | fvex | ⊢ ( TC ‘ 𝐴 )  ∈  V | 
						
							| 34 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 35 | 33 34 | unex | ⊢ ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∈  V | 
						
							| 36 |  | eleq2 | ⊢ ( 𝑥  =  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) ) | 
						
							| 37 |  | treq | ⊢ ( 𝑥  =  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  →  ( Tr  𝑥  ↔  Tr  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) ) | 
						
							| 38 | 36 37 | anbi12d | ⊢ ( 𝑥  =  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  →  ( ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 )  ↔  ( 𝐴  ∈  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∧  Tr  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) ) ) | 
						
							| 39 | 35 38 | elab | ⊢ ( ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∈  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ↔  ( 𝐴  ∈  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∧  Tr  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) ) | 
						
							| 40 | 18 32 39 | mpbir2an | ⊢ ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∈  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 41 |  | intss1 | ⊢ ( ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  ∈  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  →  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ⊆  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) ) | 
						
							| 42 | 40 41 | ax-mp | ⊢ ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  ⊆  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) | 
						
							| 43 | 15 42 | eqssi | ⊢ ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  =  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } |