| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
tcvalg |
⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 3 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑥 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥 ) ) |
| 4 |
|
trss |
⊢ ( Tr 𝑥 → ( 𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
| 5 |
4
|
com12 |
⊢ ( 𝐵 ∈ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
| 6 |
3 5
|
syl6com |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ⊆ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
| 7 |
6
|
impd |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐵 ⊆ 𝑥 ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → Tr 𝑥 ) |
| 9 |
7 8
|
jca2 |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
| 10 |
9
|
ss2abdv |
⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 11 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 13 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 14 |
1 13
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 15 |
12 14
|
sseqtrrdi |
⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) ) |
| 16 |
2 15
|
eqsstrd |
⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |