Step |
Hyp |
Ref |
Expression |
1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
2 |
|
tcvalg |
⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
3 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝑥 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑥 ) ) |
4 |
|
trss |
⊢ ( Tr 𝑥 → ( 𝐵 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
5 |
4
|
com12 |
⊢ ( 𝐵 ∈ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
6 |
3 5
|
syl6com |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐴 ⊆ 𝑥 → ( Tr 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
7 |
6
|
impd |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐵 ⊆ 𝑥 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → Tr 𝑥 ) |
9 |
7 8
|
jca2 |
⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
10 |
9
|
ss2abdv |
⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
11 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
13 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
14 |
1 13
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
15 |
12 14
|
sseqtrrdi |
⊢ ( 𝐵 ∈ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) ) |
16 |
2 15
|
eqsstrd |
⊢ ( 𝐵 ∈ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |