Metamath Proof Explorer


Theorem tcel

Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 𝐴 ∈ V
Assertion tcel ( 𝐵𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 tc2.1 𝐴 ∈ V
2 tcvalg ( 𝐵𝐴 → ( TC ‘ 𝐵 ) = { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } )
3 ssel ( 𝐴𝑥 → ( 𝐵𝐴𝐵𝑥 ) )
4 trss ( Tr 𝑥 → ( 𝐵𝑥𝐵𝑥 ) )
5 4 com12 ( 𝐵𝑥 → ( Tr 𝑥𝐵𝑥 ) )
6 3 5 syl6com ( 𝐵𝐴 → ( 𝐴𝑥 → ( Tr 𝑥𝐵𝑥 ) ) )
7 6 impd ( 𝐵𝐴 → ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝐵𝑥 ) )
8 simpr ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → Tr 𝑥 )
9 7 8 jca2 ( 𝐵𝐴 → ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ( 𝐵𝑥 ∧ Tr 𝑥 ) ) )
10 9 ss2abdv ( 𝐵𝐴 → { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } )
11 intss ( { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } → { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )
12 10 11 syl ( 𝐵𝐴 { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )
13 tcvalg ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )
14 1 13 ax-mp ( TC ‘ 𝐴 ) = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) }
15 12 14 sseqtrrdi ( 𝐵𝐴 { 𝑥 ∣ ( 𝐵𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) )
16 2 15 eqsstrd ( 𝐵𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) )