Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphnmval.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
tcphnmval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
tcphnmval.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
6 |
|
fvrn0 |
⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) |
7 |
6
|
a1i |
⊢ ( 𝑥 ∈ 𝑉 → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) ) |
8 |
5 7
|
fmpti |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) |
9 |
1 3 4
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
10 |
|
cnex |
⊢ ℂ ∈ V |
11 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
12 |
|
frn |
⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) |
13 |
11 12
|
ax-mp |
⊢ ran √ ⊆ ℂ |
14 |
10 13
|
ssexi |
⊢ ran √ ∈ V |
15 |
|
p0ex |
⊢ { ∅ } ∈ V |
16 |
14 15
|
unex |
⊢ ( ran √ ∪ { ∅ } ) ∈ V |
17 |
9 3 16
|
tngnm |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) ) → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( norm ‘ 𝐺 ) ) |
18 |
8 17
|
mpan2 |
⊢ ( 𝑊 ∈ Grp → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( norm ‘ 𝐺 ) ) |
19 |
2 18
|
eqtr4id |
⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |