| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) |
| 2 |
|
tctr |
⊢ Tr ( TC ‘ 𝐴 ) |
| 3 |
|
fvex |
⊢ ( TC ‘ 𝐴 ) ∈ V |
| 4 |
|
tcmin |
⊢ ( ( TC ‘ 𝐴 ) ∈ V → ( ( ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ∧ Tr ( TC ‘ 𝐴 ) ) → ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ∧ Tr ( TC ‘ 𝐴 ) ) → ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) ) |
| 6 |
1 2 5
|
mp2an |
⊢ ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) |
| 7 |
|
tcid |
⊢ ( ( TC ‘ 𝐴 ) ∈ V → ( TC ‘ 𝐴 ) ⊆ ( TC ‘ ( TC ‘ 𝐴 ) ) ) |
| 8 |
3 7
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ ( TC ‘ 𝐴 ) ) |
| 9 |
6 8
|
eqssi |
⊢ ( TC ‘ ( TC ‘ 𝐴 ) ) = ( TC ‘ 𝐴 ) |