Step |
Hyp |
Ref |
Expression |
1 |
|
tcvalg |
⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
2 |
|
fvex |
⊢ ( TC ‘ 𝐴 ) ∈ V |
3 |
1 2
|
eqeltrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
4 |
|
intexab |
⊢ ( ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
6 |
|
ssin |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) |
7 |
6
|
biimpi |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) |
8 |
|
trin |
⊢ ( ( Tr 𝑥 ∧ Tr 𝐵 ) → Tr ( 𝑥 ∩ 𝐵 ) ) |
9 |
7 8
|
anim12i |
⊢ ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) ∧ ( Tr 𝑥 ∧ Tr 𝐵 ) ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
10 |
9
|
an4s |
⊢ ( ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
11 |
10
|
expcom |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) ) |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
12
|
inex1 |
⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
14 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) ) |
15 |
|
treq |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( Tr 𝑦 ↔ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
16 |
14 15
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) ↔ ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) ) |
17 |
13 16
|
elab |
⊢ ( ( 𝑥 ∩ 𝐵 ) ∈ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ↔ ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
18 |
|
intss1 |
⊢ ( ( 𝑥 ∩ 𝐵 ) ∈ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ ( 𝑥 ∩ 𝐵 ) ) |
19 |
17 18
|
sylbir |
⊢ ( ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ ( 𝑥 ∩ 𝐵 ) ) |
20 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 |
21 |
19 20
|
sstrdi |
⊢ ( ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) |
22 |
11 21
|
syl6 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
23 |
22
|
exlimdv |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
24 |
5 23
|
syl5com |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
25 |
|
tcvalg |
⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ) |
26 |
25
|
sseq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( TC ‘ 𝐴 ) ⊆ 𝐵 ↔ ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
27 |
24 26
|
sylibrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( TC ‘ 𝐴 ) ⊆ 𝐵 ) ) |