Metamath Proof Explorer


Theorem tcphbas

Description: The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphbas.v 𝑉 = ( Base ‘ 𝑊 )
Assertion tcphbas 𝑉 = ( Base ‘ 𝐺 )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphbas.v 𝑉 = ( Base ‘ 𝑊 )
3 2 tcphex ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V
4 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
5 1 2 4 tcphval 𝐺 = ( 𝑊 toNrmGrp ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
6 5 2 tngbas ( ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V → 𝑉 = ( Base ‘ 𝐺 ) )
7 3 6 ax-mp 𝑉 = ( Base ‘ 𝐺 )