Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
6 |
|
tcphcph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
7 |
|
tcphcph.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) |
8 |
|
tcphcph.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
9 |
1
|
tcphphl |
⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |
10 |
4 9
|
sylib |
⊢ ( 𝜑 → 𝐺 ∈ PreHil ) |
11 |
1 2 6
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
12 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
14 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
16 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
18 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ ℝ ) |
19 |
18 8
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ℝ ) |
20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ℝ ) |
21 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) |
22 |
21
|
anidms |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
25 |
|
fvex |
⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ V |
26 |
23 24 25
|
fvmpt3i |
⊢ ( 𝑦 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
28 |
27
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
30 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
31 |
4 30
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
32 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
34 |
29 5 33
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
35 |
34
|
simp2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ) |
36 |
|
inss2 |
⊢ ( 𝐾 ∩ ℂ ) ⊆ ℂ |
37 |
35 36
|
eqsstrdi |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
39 |
3 6 2 29
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
40 |
39
|
3anidm23 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
41 |
4 40
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
42 |
38 41
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ℂ ) |
43 |
42
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ ) |
44 |
|
sqeq0 |
⊢ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
46 |
42
|
sqsqrtd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = ( 𝑦 , 𝑦 ) ) |
47 |
1 2 3 4 5
|
phclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
48 |
3
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐹 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
51 |
46 50
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
52 |
45 51
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
53 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
54 |
3 6 2 53 13
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
55 |
4 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
56 |
28 52 55
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
57 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
58 |
34
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
60 |
|
3anass |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
61 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
63 |
62
|
sqrtcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
64 |
7 63
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) |
65 |
64
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
66 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ ( 𝐾 ∩ ℂ ) ) ) |
67 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
68 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℂ ) ) |
69 |
68
|
rbaib |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
70 |
67 69
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
71 |
66 70
|
sylan9bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
72 |
71
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
73 |
72
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) ) |
74 |
73
|
pm5.32rd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) ) |
75 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
76 |
74 75
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
77 |
35
|
eleq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ) ) |
78 |
|
elin |
⊢ ( ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) |
79 |
77 78
|
bitrdi |
⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
80 |
65 76 79
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
81 |
60 80
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
83 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
84 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
85 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
86 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
87 |
1 2 3 57 59 6 83 84 29 12 85 86
|
tcphcphlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ≤ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
88 |
2 12
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
89 |
88
|
3expb |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
90 |
17 89
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
91 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∧ 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) |
92 |
91
|
anidms |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) |
93 |
92
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
94 |
93 24 25
|
fvmpt3i |
⊢ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
95 |
90 94
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
96 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑧 ) → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) |
97 |
96
|
anidms |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) |
98 |
97
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
99 |
98 24 25
|
fvmpt3i |
⊢ ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
100 |
26 99
|
oveqan12d |
⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
102 |
87 95 101
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ≤ ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) ) |
103 |
11 2 12 13 17 20 56 102
|
tngngpd |
⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) |
104 |
|
phllmod |
⊢ ( 𝐺 ∈ PreHil → 𝐺 ∈ LMod ) |
105 |
10 104
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ LMod ) |
106 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
107 |
34
|
simp3d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
108 |
|
eqid |
⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) |
109 |
108
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
110 |
106 107 109
|
sylancr |
⊢ ( 𝜑 → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
111 |
58 110
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ NrmRing ) |
112 |
103 105 111
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ) |
113 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
114 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
115 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
116 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
117 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
118 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) |
119 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
120 |
1 2 3 113 114 6 115 116 29 117 118 119
|
tcphcphlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
121 |
2 3 117 29
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
122 |
121
|
3expb |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
123 |
15 122
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
124 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
125 |
1 124 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
126 |
17 123 125
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
127 |
114
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
128 |
127
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) ) |
129 |
|
subrgsubg |
⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) |
130 |
107 129
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) |
131 |
|
cnfldnm |
⊢ abs = ( norm ‘ ℂfld ) |
132 |
|
eqid |
⊢ ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
133 |
108 131 132
|
subgnm2 |
⊢ ( ( ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
134 |
130 118 133
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
135 |
128 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
136 |
1 124 2 6
|
tcphnmval |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑧 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
137 |
17 119 136
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
138 |
135 137
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
139 |
120 126 138
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
140 |
139
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
141 |
1 2
|
tcphbas |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
142 |
1 117
|
tcphvsca |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
143 |
1 3
|
tcphsca |
⊢ 𝐹 = ( Scalar ‘ 𝐺 ) |
144 |
|
eqid |
⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) |
145 |
141 124 142 143 29 144
|
isnlm |
⊢ ( 𝐺 ∈ NrmMod ↔ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
146 |
112 140 145
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ NrmMod ) |
147 |
10 146 58
|
3jca |
⊢ ( 𝜑 → ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
148 |
|
elin |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ) |
149 |
|
elrege0 |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
150 |
149
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
151 |
148 150
|
bitri |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
152 |
151 80
|
syl5bi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
153 |
152
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
154 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
155 |
|
ffun |
⊢ ( √ : ℂ ⟶ ℂ → Fun √ ) |
156 |
154 155
|
ax-mp |
⊢ Fun √ |
157 |
|
inss1 |
⊢ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ 𝐹 ) |
158 |
157 37
|
sstrid |
⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ) |
159 |
154
|
fdmi |
⊢ dom √ = ℂ |
160 |
158 159
|
sseqtrrdi |
⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) |
161 |
|
funimass4 |
⊢ ( ( Fun √ ∧ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
162 |
156 160 161
|
sylancr |
⊢ ( 𝜑 → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
163 |
153 162
|
mpbird |
⊢ ( 𝜑 → ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ) |
164 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) |
165 |
1 2 6
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
166 |
|
cnex |
⊢ ℂ ∈ V |
167 |
165 2 166
|
tngnm |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
168 |
17 164 167
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
169 |
168
|
eqcomd |
⊢ ( 𝜑 → ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
170 |
1 6
|
tcphip |
⊢ , = ( ·𝑖 ‘ 𝐺 ) |
171 |
141 170 124 143 29
|
iscph |
⊢ ( 𝐺 ∈ ℂPreHil ↔ ( ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ∧ ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ∧ ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) ) |
172 |
147 163 169 171
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 ∈ ℂPreHil ) |