| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphcph.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | tcphcph.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | tcphcph.1 | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | tcphcph.2 | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 6 |  | tcphcph.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 7 |  | tcphcph.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  𝐾 ) | 
						
							| 8 |  | tcphcph.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  0  ≤  ( 𝑥  ,  𝑥 ) ) | 
						
							| 9 | 1 | tcphphl | ⊢ ( 𝑊  ∈  PreHil  ↔  𝐺  ∈  PreHil ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( 𝜑  →  𝐺  ∈  PreHil ) | 
						
							| 11 | 1 2 6 | tcphval | ⊢ 𝐺  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 14 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 16 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Grp ) | 
						
							| 18 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝑥  ,  𝑥 )  ∈  ℝ ) | 
						
							| 19 | 18 8 | resqrtcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) : 𝑉 ⟶ ℝ ) | 
						
							| 21 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑥  =  𝑦 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝑦  ,  𝑦 ) ) | 
						
							| 22 | 21 | anidms | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ,  𝑥 )  =  ( 𝑦  ,  𝑦 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  =  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) )  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) | 
						
							| 25 |  | fvex | ⊢ ( √ ‘ ( 𝑥  ,  𝑥 ) )  ∈  V | 
						
							| 26 | 23 24 25 | fvmpt3i | ⊢ ( 𝑦  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  =  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  =  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) | 
						
							| 28 | 27 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  =  0  ↔  ( √ ‘ ( 𝑦  ,  𝑦 ) )  =  0 ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 30 |  | phllvec | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LVec ) | 
						
							| 31 | 4 30 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 32 | 3 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝐹  ∈  DivRing ) | 
						
							| 34 | 29 5 33 | cphsubrglem | ⊢ ( 𝜑  →  ( 𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  ∧  ( Base ‘ 𝐹 )  =  ( 𝐾  ∩  ℂ )  ∧  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 35 | 34 | simp2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( 𝐾  ∩  ℂ ) ) | 
						
							| 36 |  | inss2 | ⊢ ( 𝐾  ∩  ℂ )  ⊆  ℂ | 
						
							| 37 | 35 36 | eqsstrdi | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  ⊆  ℂ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( Base ‘ 𝐹 )  ⊆  ℂ ) | 
						
							| 39 | 3 6 2 29 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑦  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ,  𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 40 | 39 | 3anidm23 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ,  𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 41 | 4 40 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ,  𝑦 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 42 | 38 41 | sseldd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦  ,  𝑦 )  ∈  ℂ ) | 
						
							| 43 | 42 | sqrtcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( √ ‘ ( 𝑦  ,  𝑦 ) )  ∈  ℂ ) | 
						
							| 44 |  | sqeq0 | ⊢ ( ( √ ‘ ( 𝑦  ,  𝑦 ) )  ∈  ℂ  →  ( ( ( √ ‘ ( 𝑦  ,  𝑦 ) ) ↑ 2 )  =  0  ↔  ( √ ‘ ( 𝑦  ,  𝑦 ) )  =  0 ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( ( √ ‘ ( 𝑦  ,  𝑦 ) ) ↑ 2 )  =  0  ↔  ( √ ‘ ( 𝑦  ,  𝑦 ) )  =  0 ) ) | 
						
							| 46 | 42 | sqsqrtd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( √ ‘ ( 𝑦  ,  𝑦 ) ) ↑ 2 )  =  ( 𝑦  ,  𝑦 ) ) | 
						
							| 47 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑  →  𝑊  ∈  ℂMod ) | 
						
							| 48 | 3 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  0  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  0  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 51 | 46 50 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( ( √ ‘ ( 𝑦  ,  𝑦 ) ) ↑ 2 )  =  0  ↔  ( 𝑦  ,  𝑦 )  =  ( 0g ‘ 𝐹 ) ) ) | 
						
							| 52 | 45 51 | bitr3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( √ ‘ ( 𝑦  ,  𝑦 ) )  =  0  ↔  ( 𝑦  ,  𝑦 )  =  ( 0g ‘ 𝐹 ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 54 | 3 6 2 53 13 | ipeq0 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑦  ,  𝑦 )  =  ( 0g ‘ 𝐹 )  ↔  𝑦  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 55 | 4 54 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑦  ,  𝑦 )  =  ( 0g ‘ 𝐹 )  ↔  𝑦  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 56 | 28 52 55 | 3bitrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉 )  →  ( ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  =  0  ↔  𝑦  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 57 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 58 | 34 | simp1d | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 60 |  | 3anass | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 61 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 62 | 61 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 63 | 62 | sqrtcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 64 | 7 63 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( ( √ ‘ 𝑥 )  ∈  𝐾  ∧  ( √ ‘ 𝑥 )  ∈  ℂ ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ( √ ‘ 𝑥 )  ∈  𝐾  ∧  ( √ ‘ 𝑥 )  ∈  ℂ ) ) ) | 
						
							| 66 | 35 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ↔  𝑥  ∈  ( 𝐾  ∩  ℂ ) ) ) | 
						
							| 67 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 68 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐾  ∩  ℂ )  ↔  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℂ ) ) | 
						
							| 69 | 68 | rbaib | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ∈  ( 𝐾  ∩  ℂ )  ↔  𝑥  ∈  𝐾 ) ) | 
						
							| 70 | 67 69 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ∈  ( 𝐾  ∩  ℂ )  ↔  𝑥  ∈  𝐾 ) ) | 
						
							| 71 | 66 70 | sylan9bb | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ↔  𝑥  ∈  𝐾 ) ) | 
						
							| 72 | 71 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ↔  𝑥  ∈  𝐾 ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ↔  𝑥  ∈  𝐾 ) ) ) | 
						
							| 74 | 73 | pm5.32rd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  ↔  ( 𝑥  ∈  𝐾  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) ) | 
						
							| 75 |  | 3anass | ⊢ ( ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  ↔  ( 𝑥  ∈  𝐾  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 76 | 74 75 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  ↔  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 77 | 35 | eleq2d | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 )  ↔  ( √ ‘ 𝑥 )  ∈  ( 𝐾  ∩  ℂ ) ) ) | 
						
							| 78 |  | elin | ⊢ ( ( √ ‘ 𝑥 )  ∈  ( 𝐾  ∩  ℂ )  ↔  ( ( √ ‘ 𝑥 )  ∈  𝐾  ∧  ( √ ‘ 𝑥 )  ∈  ℂ ) ) | 
						
							| 79 | 77 78 | bitrdi | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 )  ↔  ( ( √ ‘ 𝑥 )  ∈  𝐾  ∧  ( √ ‘ 𝑥 )  ∈  ℂ ) ) ) | 
						
							| 80 | 65 76 79 | 3imtr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) ) | 
						
							| 81 | 60 80 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 83 | 82 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 84 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  ∧  𝑥  ∈  𝑉 )  →  0  ≤  ( 𝑥  ,  𝑥 ) ) | 
						
							| 85 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 86 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 87 | 1 2 3 57 59 6 83 84 29 12 85 86 | tcphcphlem1 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) )  ≤  ( ( √ ‘ ( 𝑦  ,  𝑦 ) )  +  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) ) | 
						
							| 88 | 2 12 | grpsubcl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 89 | 88 | 3expb | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 90 | 17 89 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 91 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ∧  𝑥  =  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) )  →  ( 𝑥  ,  𝑥 )  =  ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 92 | 91 | anidms | ⊢ ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  →  ( 𝑥  ,  𝑥 )  =  ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  =  ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 94 | 93 24 25 | fvmpt3i | ⊢ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) )  =  ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 95 | 90 94 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) )  =  ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 96 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑥  =  𝑧 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝑧  ,  𝑧 ) ) | 
						
							| 97 | 96 | anidms | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ,  𝑥 )  =  ( 𝑧  ,  𝑧 ) ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( 𝑥  =  𝑧  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  =  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) | 
						
							| 99 | 98 24 25 | fvmpt3i | ⊢ ( 𝑧  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑧 )  =  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) | 
						
							| 100 | 26 99 | oveqan12d | ⊢ ( ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  +  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑧 ) )  =  ( ( √ ‘ ( 𝑦  ,  𝑦 ) )  +  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) ) | 
						
							| 101 | 100 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  +  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑧 ) )  =  ( ( √ ‘ ( 𝑦  ,  𝑦 ) )  +  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) ) | 
						
							| 102 | 87 95 101 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) )  ≤  ( ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑦 )  +  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑧 ) ) ) | 
						
							| 103 | 11 2 12 13 17 20 56 102 | tngngpd | ⊢ ( 𝜑  →  𝐺  ∈  NrmGrp ) | 
						
							| 104 |  | phllmod | ⊢ ( 𝐺  ∈  PreHil  →  𝐺  ∈  LMod ) | 
						
							| 105 | 10 104 | syl | ⊢ ( 𝜑  →  𝐺  ∈  LMod ) | 
						
							| 106 |  | cnnrg | ⊢ ℂfld  ∈  NrmRing | 
						
							| 107 | 34 | simp3d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 108 |  | eqid | ⊢ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) | 
						
							| 109 | 108 | subrgnrg | ⊢ ( ( ℂfld  ∈  NrmRing  ∧  ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld ) )  →  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  ∈  NrmRing ) | 
						
							| 110 | 106 107 109 | sylancr | ⊢ ( 𝜑  →  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) )  ∈  NrmRing ) | 
						
							| 111 | 58 110 | eqeltrd | ⊢ ( 𝜑  →  𝐹  ∈  NrmRing ) | 
						
							| 112 | 103 105 111 | 3jca | ⊢ ( 𝜑  →  ( 𝐺  ∈  NrmGrp  ∧  𝐺  ∈  LMod  ∧  𝐹  ∈  NrmRing ) ) | 
						
							| 113 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 114 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 115 | 82 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 116 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  ∧  𝑥  ∈  𝑉 )  →  0  ≤  ( 𝑥  ,  𝑥 ) ) | 
						
							| 117 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 118 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  𝑦  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 119 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 120 | 1 2 3 113 114 6 115 116 29 117 118 119 | tcphcphlem2 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( √ ‘ ( ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) ) )  =  ( ( abs ‘ 𝑦 )  ·  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) ) | 
						
							| 121 | 2 3 117 29 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 )  →  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 122 | 121 | 3expb | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 123 | 15 122 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ∈  𝑉 ) | 
						
							| 124 |  | eqid | ⊢ ( norm ‘ 𝐺 )  =  ( norm ‘ 𝐺 ) | 
						
							| 125 | 1 124 2 6 | tcphnmval | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ∈  𝑉 )  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) )  =  ( √ ‘ ( ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 126 | 17 123 125 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) )  =  ( √ ‘ ( ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 )  ,  ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 127 | 114 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( norm ‘ 𝐹 )  =  ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 128 | 127 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  =  ( ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) ) | 
						
							| 129 |  | subrgsubg | ⊢ ( ( Base ‘ 𝐹 )  ∈  ( SubRing ‘ ℂfld )  →  ( Base ‘ 𝐹 )  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 130 | 107 129 | syl | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 131 |  | cnfldnm | ⊢ abs  =  ( norm ‘ ℂfld ) | 
						
							| 132 |  | eqid | ⊢ ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) )  =  ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) | 
						
							| 133 | 108 131 132 | subgnm2 | ⊢ ( ( ( Base ‘ 𝐹 )  ∈  ( SubGrp ‘ ℂfld )  ∧  𝑦  ∈  ( Base ‘ 𝐹 ) )  →  ( ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 134 | 130 118 133 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 135 | 128 134 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 136 | 1 124 2 6 | tcphnmval | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑧  ∈  𝑉 )  →  ( ( norm ‘ 𝐺 ) ‘ 𝑧 )  =  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) | 
						
							| 137 | 17 119 136 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ 𝐺 ) ‘ 𝑧 )  =  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) | 
						
							| 138 | 135 137 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  ·  ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( √ ‘ ( 𝑧  ,  𝑧 ) ) ) ) | 
						
							| 139 | 120 126 138 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ( Base ‘ 𝐹 )  ∧  𝑧  ∈  𝑉 ) )  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  ·  ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 140 | 139 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( Base ‘ 𝐹 ) ∀ 𝑧  ∈  𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  ·  ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) | 
						
							| 141 | 1 2 | tcphbas | ⊢ 𝑉  =  ( Base ‘ 𝐺 ) | 
						
							| 142 | 1 117 | tcphvsca | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐺 ) | 
						
							| 143 | 1 3 | tcphsca | ⊢ 𝐹  =  ( Scalar ‘ 𝐺 ) | 
						
							| 144 |  | eqid | ⊢ ( norm ‘ 𝐹 )  =  ( norm ‘ 𝐹 ) | 
						
							| 145 | 141 124 142 143 29 144 | isnlm | ⊢ ( 𝐺  ∈  NrmMod  ↔  ( ( 𝐺  ∈  NrmGrp  ∧  𝐺  ∈  LMod  ∧  𝐹  ∈  NrmRing )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐹 ) ∀ 𝑧  ∈  𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 (  ·𝑠  ‘ 𝑊 ) 𝑧 ) )  =  ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 )  ·  ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) | 
						
							| 146 | 112 140 145 | sylanbrc | ⊢ ( 𝜑  →  𝐺  ∈  NrmMod ) | 
						
							| 147 | 10 146 58 | 3jca | ⊢ ( 𝜑  →  ( 𝐺  ∈  PreHil  ∧  𝐺  ∈  NrmMod  ∧  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) ) ) | 
						
							| 148 |  | elin | ⊢ ( 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 149 |  | elrege0 | ⊢ ( 𝑥  ∈  ( 0 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 150 | 149 | anbi2i | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  𝑥  ∈  ( 0 [,) +∞ ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 151 | 148 150 | bitri | ⊢ ( 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 152 | 151 80 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  →  ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) ) | 
						
							| 153 | 152 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 154 |  | sqrtf | ⊢ √ : ℂ ⟶ ℂ | 
						
							| 155 |  | ffun | ⊢ ( √ : ℂ ⟶ ℂ  →  Fun  √ ) | 
						
							| 156 | 154 155 | ax-mp | ⊢ Fun  √ | 
						
							| 157 |  | inss1 | ⊢ ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ⊆  ( Base ‘ 𝐹 ) | 
						
							| 158 | 157 37 | sstrid | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ⊆  ℂ ) | 
						
							| 159 | 154 | fdmi | ⊢ dom  √  =  ℂ | 
						
							| 160 | 158 159 | sseqtrrdi | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ⊆  dom  √ ) | 
						
							| 161 |  | funimass4 | ⊢ ( ( Fun  √  ∧  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) )  ⊆  dom  √ )  →  ( ( √  “  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ 𝐹 )  ↔  ∀ 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) ) | 
						
							| 162 | 156 160 161 | sylancr | ⊢ ( 𝜑  →  ( ( √  “  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ 𝐹 )  ↔  ∀ 𝑥  ∈  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 )  ∈  ( Base ‘ 𝐹 ) ) ) | 
						
							| 163 | 153 162 | mpbird | ⊢ ( 𝜑  →  ( √  “  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ 𝐹 ) ) | 
						
							| 164 | 43 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) : 𝑉 ⟶ ℂ ) | 
						
							| 165 | 1 2 6 | tcphval | ⊢ 𝐺  =  ( 𝑊  toNrmGrp  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) ) | 
						
							| 166 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 167 | 165 2 166 | tngnm | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) : 𝑉 ⟶ ℂ )  →  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) )  =  ( norm ‘ 𝐺 ) ) | 
						
							| 168 | 17 164 167 | syl2anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) )  =  ( norm ‘ 𝐺 ) ) | 
						
							| 169 | 168 | eqcomd | ⊢ ( 𝜑  →  ( norm ‘ 𝐺 )  =  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) ) | 
						
							| 170 | 1 6 | tcphip | ⊢  ,   =  ( ·𝑖 ‘ 𝐺 ) | 
						
							| 171 | 141 170 124 143 29 | iscph | ⊢ ( 𝐺  ∈  ℂPreHil  ↔  ( ( 𝐺  ∈  PreHil  ∧  𝐺  ∈  NrmMod  ∧  𝐹  =  ( ℂfld  ↾s  ( Base ‘ 𝐹 ) ) )  ∧  ( √  “  ( ( Base ‘ 𝐹 )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ 𝐹 )  ∧  ( norm ‘ 𝐺 )  =  ( 𝑦  ∈  𝑉  ↦  ( √ ‘ ( 𝑦  ,  𝑦 ) ) ) ) ) | 
						
							| 172 | 147 163 169 171 | syl3anbrc | ⊢ ( 𝜑  →  𝐺  ∈  ℂPreHil ) |