| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphcph.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | tcphcph.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | tcphcph.1 | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | tcphcph.2 | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 6 |  | tcphcph.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 7 |  | tcphcph.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) )  →  ( √ ‘ 𝑥 )  ∈  𝐾 ) | 
						
							| 8 |  | tcphcph.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  0  ≤  ( 𝑥  ,  𝑥 ) ) | 
						
							| 9 |  | tcphcph.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 10 |  | tcphcph.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 11 |  | tcphcphlem2.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝐾 ) | 
						
							| 12 |  | tcphcphlem2.4 | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑  →  𝑊  ∈  ℂMod ) | 
						
							| 14 | 3 9 | clmsscn | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ⊆  ℂ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  ℂ ) | 
						
							| 16 | 15 11 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 17 | 16 | cjmulrcld | ⊢ ( 𝜑  →  ( 𝑋  ·  ( ∗ ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 18 | 16 | cjmulge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑋  ·  ( ∗ ‘ 𝑋 ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑  ∧  𝑌  ∈  𝑉 )  →  ( 𝑌  ,  𝑌 )  ∈  ℝ ) | 
						
							| 20 | 12 19 | mpdan | ⊢ ( 𝜑  →  ( 𝑌  ,  𝑌 )  ∈  ℝ ) | 
						
							| 21 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑌  ∧  𝑥  =  𝑌 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝑌  ,  𝑌 ) ) | 
						
							| 22 | 21 | anidms | ⊢ ( 𝑥  =  𝑌  →  ( 𝑥  ,  𝑥 )  =  ( 𝑌  ,  𝑌 ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( 𝑥  =  𝑌  →  ( 0  ≤  ( 𝑥  ,  𝑥 )  ↔  0  ≤  ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 24 | 8 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 0  ≤  ( 𝑥  ,  𝑥 ) ) | 
						
							| 25 | 23 24 12 | rspcdva | ⊢ ( 𝜑  →  0  ≤  ( 𝑌  ,  𝑌 ) ) | 
						
							| 26 | 17 18 20 25 | sqrtmuld | ⊢ ( 𝜑  →  ( √ ‘ ( ( 𝑋  ·  ( ∗ ‘ 𝑋 ) )  ·  ( 𝑌  ,  𝑌 ) ) )  =  ( ( √ ‘ ( 𝑋  ·  ( ∗ ‘ 𝑋 ) ) )  ·  ( √ ‘ ( 𝑌  ,  𝑌 ) ) ) ) | 
						
							| 27 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 28 | 4 27 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 29 | 2 3 10 9 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 30 | 28 11 12 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 31 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 32 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 33 | 3 6 2 9 10 31 32 | ipassr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( 𝑋  ·  𝑌 )  ∈  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑋  ∈  𝐾 ) )  →  ( ( 𝑋  ·  𝑌 )  ,  ( 𝑋  ·  𝑌 ) )  =  ( ( ( 𝑋  ·  𝑌 )  ,  𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 34 | 4 30 12 11 33 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ,  ( 𝑋  ·  𝑌 ) )  =  ( ( ( 𝑋  ·  𝑌 )  ,  𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 35 | 3 | clmmul | ⊢ ( 𝑊  ∈  ℂMod  →   ·   =  ( .r ‘ 𝐹 ) ) | 
						
							| 36 | 13 35 | syl | ⊢ ( 𝜑  →   ·   =  ( .r ‘ 𝐹 ) ) | 
						
							| 37 | 36 | oveqd | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑌  ,  𝑌 ) )  =  ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 38 | 3 6 2 9 10 31 | ipass | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝑋  ∈  𝐾  ∧  𝑌  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ( 𝑋  ·  𝑌 )  ,  𝑌 )  =  ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 39 | 4 11 12 12 38 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ,  𝑌 )  =  ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 40 | 37 39 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑋  ·  ( 𝑌  ,  𝑌 ) )  =  ( ( 𝑋  ·  𝑌 )  ,  𝑌 ) ) | 
						
							| 41 | 3 | clmcj | ⊢ ( 𝑊  ∈  ℂMod  →  ∗  =  ( *𝑟 ‘ 𝐹 ) ) | 
						
							| 42 | 13 41 | syl | ⊢ ( 𝜑  →  ∗  =  ( *𝑟 ‘ 𝐹 ) ) | 
						
							| 43 | 42 | fveq1d | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑋 )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) | 
						
							| 44 | 36 40 43 | oveq123d | ⊢ ( 𝜑  →  ( ( 𝑋  ·  ( 𝑌  ,  𝑌 ) )  ·  ( ∗ ‘ 𝑋 ) )  =  ( ( ( 𝑋  ·  𝑌 )  ,  𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) | 
						
							| 45 | 20 | recnd | ⊢ ( 𝜑  →  ( 𝑌  ,  𝑌 )  ∈  ℂ ) | 
						
							| 46 | 16 | cjcld | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 47 | 16 45 46 | mul32d | ⊢ ( 𝜑  →  ( ( 𝑋  ·  ( 𝑌  ,  𝑌 ) )  ·  ( ∗ ‘ 𝑋 ) )  =  ( ( 𝑋  ·  ( ∗ ‘ 𝑋 ) )  ·  ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 48 | 34 44 47 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑋  ·  𝑌 )  ,  ( 𝑋  ·  𝑌 ) )  =  ( ( 𝑋  ·  ( ∗ ‘ 𝑋 ) )  ·  ( 𝑌  ,  𝑌 ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( 𝜑  →  ( √ ‘ ( ( 𝑋  ·  𝑌 )  ,  ( 𝑋  ·  𝑌 ) ) )  =  ( √ ‘ ( ( 𝑋  ·  ( ∗ ‘ 𝑋 ) )  ·  ( 𝑌  ,  𝑌 ) ) ) ) | 
						
							| 50 |  | absval | ⊢ ( 𝑋  ∈  ℂ  →  ( abs ‘ 𝑋 )  =  ( √ ‘ ( 𝑋  ·  ( ∗ ‘ 𝑋 ) ) ) ) | 
						
							| 51 | 16 50 | syl | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  =  ( √ ‘ ( 𝑋  ·  ( ∗ ‘ 𝑋 ) ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑋 )  ·  ( √ ‘ ( 𝑌  ,  𝑌 ) ) )  =  ( ( √ ‘ ( 𝑋  ·  ( ∗ ‘ 𝑋 ) ) )  ·  ( √ ‘ ( 𝑌  ,  𝑌 ) ) ) ) | 
						
							| 53 | 26 49 52 | 3eqtr4d | ⊢ ( 𝜑  →  ( √ ‘ ( ( 𝑋  ·  𝑌 )  ,  ( 𝑋  ·  𝑌 ) ) )  =  ( ( abs ‘ 𝑋 )  ·  ( √ ‘ ( 𝑌  ,  𝑌 ) ) ) ) |