Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphcph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
tcphcph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
tcphcph.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
5 |
|
tcphcph.2 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
6 |
|
tcphcph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
7 |
|
tcphcph.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) |
8 |
|
tcphcph.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
9 |
|
tcphcph.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
10 |
|
tcphcph.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
11 |
|
tcphcphlem2.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
12 |
|
tcphcphlem2.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
1 2 3 4 5
|
phclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
14 |
3 9
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
16 |
15 11
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
17 |
16
|
cjmulrcld |
⊢ ( 𝜑 → ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ∈ ℝ ) |
18 |
16
|
cjmulge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) |
19 |
1 2 3 4 5 6
|
tcphcphlem3 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
20 |
12 19
|
mpdan |
⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
21 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑥 = 𝑌 ) → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
22 |
21
|
anidms |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
23 |
22
|
breq2d |
⊢ ( 𝑥 = 𝑌 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑌 , 𝑌 ) ) ) |
24 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
25 |
23 24 12
|
rspcdva |
⊢ ( 𝜑 → 0 ≤ ( 𝑌 , 𝑌 ) ) |
26 |
17 18 20 25
|
sqrtmuld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) = ( ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
27 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
28 |
4 27
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
29 |
2 3 10 9
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
30 |
28 11 12 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
32 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
33 |
3 6 2 9 10 31 32
|
ipassr |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑋 · 𝑌 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) ) → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
34 |
4 30 12 11 33
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
35 |
3
|
clmmul |
⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
36 |
13 35
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐹 ) ) |
37 |
36
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 , 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
38 |
3 6 2 9 10 31
|
ipass |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑌 ) , 𝑌 ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
39 |
4 11 12 12 38
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , 𝑌 ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
40 |
37 39
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 · 𝑌 ) , 𝑌 ) ) |
41 |
3
|
clmcj |
⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
42 |
13 41
|
syl |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
43 |
42
|
fveq1d |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) |
44 |
36 40 43
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑌 , 𝑌 ) ) · ( ∗ ‘ 𝑋 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
45 |
20
|
recnd |
⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
46 |
16
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
47 |
16 45 46
|
mul32d |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑌 , 𝑌 ) ) · ( ∗ ‘ 𝑋 ) ) = ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) |
48 |
34 44 47
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) ) = ( √ ‘ ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) ) |
50 |
|
absval |
⊢ ( 𝑋 ∈ ℂ → ( abs ‘ 𝑋 ) = ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) ) |
51 |
16 50
|
syl |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) = ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) = ( ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
53 |
26 49 52
|
3eqtr4d |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) ) = ( ( abs ‘ 𝑋 ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |