Metamath Proof Explorer


Theorem tcphcphlem3

Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphcph.v 𝑉 = ( Base ‘ 𝑊 )
tcphcph.f 𝐹 = ( Scalar ‘ 𝑊 )
tcphcph.1 ( 𝜑𝑊 ∈ PreHil )
tcphcph.2 ( 𝜑𝐹 = ( ℂflds 𝐾 ) )
tcphcph.h , = ( ·𝑖𝑊 )
Assertion tcphcphlem3 ( ( 𝜑𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphcph.v 𝑉 = ( Base ‘ 𝑊 )
3 tcphcph.f 𝐹 = ( Scalar ‘ 𝑊 )
4 tcphcph.1 ( 𝜑𝑊 ∈ PreHil )
5 tcphcph.2 ( 𝜑𝐹 = ( ℂflds 𝐾 ) )
6 tcphcph.h , = ( ·𝑖𝑊 )
7 1 2 3 4 5 phclm ( 𝜑𝑊 ∈ ℂMod )
8 7 adantr ( ( 𝜑𝑋𝑉 ) → 𝑊 ∈ ℂMod )
9 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
10 3 9 clmsscn ( 𝑊 ∈ ℂMod → ( Base ‘ 𝐹 ) ⊆ ℂ )
11 8 10 syl ( ( 𝜑𝑋𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ )
12 3 6 2 9 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) )
13 12 3anidm23 ( ( 𝑊 ∈ PreHil ∧ 𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) )
14 4 13 sylan ( ( 𝜑𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) )
15 11 14 sseldd ( ( 𝜑𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℂ )
16 3 clmcj ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟𝐹 ) )
17 8 16 syl ( ( 𝜑𝑋𝑉 ) → ∗ = ( *𝑟𝐹 ) )
18 17 fveq1d ( ( 𝜑𝑋𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( ( *𝑟𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) )
19 4 adantr ( ( 𝜑𝑋𝑉 ) → 𝑊 ∈ PreHil )
20 simpr ( ( 𝜑𝑋𝑉 ) → 𝑋𝑉 )
21 eqid ( *𝑟𝐹 ) = ( *𝑟𝐹 )
22 3 6 2 21 ipcj ( ( 𝑊 ∈ PreHil ∧ 𝑋𝑉𝑋𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) )
23 19 20 20 22 syl3anc ( ( 𝜑𝑋𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) )
24 18 23 eqtrd ( ( 𝜑𝑋𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) )
25 15 24 cjrebd ( ( 𝜑𝑋𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ )