| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphcph.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | tcphcph.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | tcphcph.1 | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | tcphcph.2 | ⊢ ( 𝜑  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 6 |  | tcphcph.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 7 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑  →  𝑊  ∈  ℂMod ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  ℂMod ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 10 | 3 9 | clmsscn | ⊢ ( 𝑊  ∈  ℂMod  →  ( Base ‘ 𝐹 )  ⊆  ℂ ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( Base ‘ 𝐹 )  ⊆  ℂ ) | 
						
							| 12 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ,  𝑋 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 13 | 12 | 3anidm23 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ,  𝑋 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 14 | 4 13 | sylan | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ,  𝑋 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 15 | 11 14 | sseldd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ,  𝑋 )  ∈  ℂ ) | 
						
							| 16 | 3 | clmcj | ⊢ ( 𝑊  ∈  ℂMod  →  ∗  =  ( *𝑟 ‘ 𝐹 ) ) | 
						
							| 17 | 8 16 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ∗  =  ( *𝑟 ‘ 𝐹 ) ) | 
						
							| 18 | 17 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( ∗ ‘ ( 𝑋  ,  𝑋 ) )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋  ,  𝑋 ) ) ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  PreHil ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 21 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 22 | 3 6 2 21 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋  ,  𝑋 ) )  =  ( 𝑋  ,  𝑋 ) ) | 
						
							| 23 | 19 20 20 22 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋  ,  𝑋 ) )  =  ( 𝑋  ,  𝑋 ) ) | 
						
							| 24 | 18 23 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( ∗ ‘ ( 𝑋  ,  𝑋 ) )  =  ( 𝑋  ,  𝑋 ) ) | 
						
							| 25 | 15 24 | cjrebd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  ,  𝑋 )  ∈  ℝ ) |