| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphds.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | tcphds.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 6 | 1 2 4 5 | tchnmfval | ⊢ ( 𝑊  ∈  Grp  →  𝑁  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 7 | 6 | coeq1d | ⊢ ( 𝑊  ∈  Grp  →  ( 𝑁  ∘   −  )  =  ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) )  ∘   −  ) ) | 
						
							| 8 | 4 | tcphex | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) )  ∈  V | 
						
							| 9 | 1 4 5 | tcphval | ⊢ 𝐺  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 10 | 9 3 | tngds | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) )  ∈  V  →  ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) )  ∘   −  )  =  ( dist ‘ 𝐺 ) ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) )  ∘   −  )  =  ( dist ‘ 𝐺 ) | 
						
							| 12 | 7 11 | eqtrdi | ⊢ ( 𝑊  ∈  Grp  →  ( 𝑁  ∘   −  )  =  ( dist ‘ 𝐺 ) ) |