Metamath Proof Explorer


Theorem tcphds

Description: The distance of a pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphds.n 𝑁 = ( norm ‘ 𝐺 )
tcphds.m = ( -g𝑊 )
Assertion tcphds ( 𝑊 ∈ Grp → ( 𝑁 ) = ( dist ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphds.n 𝑁 = ( norm ‘ 𝐺 )
3 tcphds.m = ( -g𝑊 )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
6 1 2 4 5 tchnmfval ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
7 6 coeq1d ( 𝑊 ∈ Grp → ( 𝑁 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∘ ) )
8 4 tcphex ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V
9 1 4 5 tcphval 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
10 9 3 tngds ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∘ ) = ( dist ‘ 𝐺 ) )
11 8 10 ax-mp ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∘ ) = ( dist ‘ 𝐺 )
12 7 11 eqtrdi ( 𝑊 ∈ Grp → ( 𝑁 ) = ( dist ‘ 𝐺 ) )