Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphds.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
tcphds.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
6 |
1 2 4 5
|
tchnmfval |
⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
7 |
6
|
coeq1d |
⊢ ( 𝑊 ∈ Grp → ( 𝑁 ∘ − ) = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) ) |
8 |
4
|
tcphex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V |
9 |
1 4 5
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
10 |
9 3
|
tngds |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) = ( dist ‘ 𝐺 ) ) |
11 |
8 10
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) = ( dist ‘ 𝐺 ) |
12 |
7 11
|
eqtrdi |
⊢ ( 𝑊 ∈ Grp → ( 𝑁 ∘ − ) = ( dist ‘ 𝐺 ) ) |