Metamath Proof Explorer


Theorem tcphex

Description: Lemma for tcphbas and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis tcphex.v 𝑉 = ( Base ‘ 𝑊 )
Assertion tcphex ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V

Proof

Step Hyp Ref Expression
1 tcphex.v 𝑉 = ( Base ‘ 𝑊 )
2 eqid ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) )
3 fvrn0 ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } )
4 3 a1i ( 𝑥𝑉 → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) )
5 2 4 fmpti ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } )
6 1 fvexi 𝑉 ∈ V
7 cnex ℂ ∈ V
8 sqrtf √ : ℂ ⟶ ℂ
9 frn ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ )
10 8 9 ax-mp ran √ ⊆ ℂ
11 7 10 ssexi ran √ ∈ V
12 p0ex { ∅ } ∈ V
13 11 12 unex ( ran √ ∪ { ∅ } ) ∈ V
14 fex2 ( ( ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) ∧ 𝑉 ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V )
15 5 6 13 14 mp3an ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V