Step |
Hyp |
Ref |
Expression |
1 |
|
tcphex.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
3 |
|
fvrn0 |
⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) |
4 |
3
|
a1i |
⊢ ( 𝑥 ∈ 𝑉 → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) ) |
5 |
2 4
|
fmpti |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) |
6 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
7 |
|
cnex |
⊢ ℂ ∈ V |
8 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
9 |
|
frn |
⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) |
10 |
8 9
|
ax-mp |
⊢ ran √ ⊆ ℂ |
11 |
7 10
|
ssexi |
⊢ ran √ ∈ V |
12 |
|
p0ex |
⊢ { ∅ } ∈ V |
13 |
11 12
|
unex |
⊢ ( ran √ ∪ { ∅ } ) ∈ V |
14 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) ∧ 𝑉 ∈ V ∧ ( ran √ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V ) |
15 |
5 6 13 14
|
mp3an |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ∈ V |