Metamath Proof Explorer


Theorem tcphip

Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphip.s · = ( ·𝑖𝑊 )
Assertion tcphip · = ( ·𝑖𝐺 )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphip.s · = ( ·𝑖𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 3 tcphex ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 · 𝑥 ) ) ) ∈ V
5 1 3 2 tcphval 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 · 𝑥 ) ) ) )
6 5 2 tngip ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 · 𝑥 ) ) ) ∈ V → · = ( ·𝑖𝐺 ) )
7 4 6 ax-mp · = ( ·𝑖𝐺 )