Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphnmval.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
tcphnmval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
tcphnmval.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
5 |
1 2 3 4
|
tchnmfval |
⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑊 ∈ Grp → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑋 ) ) |
7 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
8 |
7
|
anidms |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
11 |
|
fvex |
⊢ ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ V |
12 |
9 10 11
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
13 |
6 12
|
sylan9eq |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |