| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphnmval.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | tcphnmval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | tcphnmval.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 5 | 1 2 3 4 | tchnmfval | ⊢ ( 𝑊  ∈  Grp  →  𝑁  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑊  ∈  Grp  →  ( 𝑁 ‘ 𝑋 )  =  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑋 ) ) | 
						
							| 7 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑥  =  𝑋 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝑋  ,  𝑋 ) ) | 
						
							| 8 | 7 | anidms | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ,  𝑥 )  =  ( 𝑋  ,  𝑋 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑥  =  𝑋  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  =  ( √ ‘ ( 𝑋  ,  𝑋 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) )  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) | 
						
							| 11 |  | fvex | ⊢ ( √ ‘ ( 𝑋  ,  𝑋 ) )  ∈  V | 
						
							| 12 | 9 10 11 | fvmpt | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝑋 )  =  ( √ ‘ ( 𝑋  ,  𝑋 ) ) ) | 
						
							| 13 | 6 12 | sylan9eq | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ 𝑋 )  =  ( √ ‘ ( 𝑋  ,  𝑋 ) ) ) |