| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | eqidd | ⊢ ( ⊤  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 | 1 3 | tcphbas | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 4 | a1i | ⊢ ( ⊤  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 7 | 1 6 | tchplusg | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝐺 ) | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  ( +g ‘ 𝑊 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 9 | 8 | oveqdr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ⊤  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 12 | 1 11 | tcphsca | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝐺 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ⊤  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝐺 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 16 | 1 15 | tcphvsca | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐺 ) | 
						
							| 17 | 16 | a1i | ⊢ ( ⊤  →  (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐺 ) ) | 
						
							| 18 | 17 | oveqdr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 19 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 20 | 1 19 | tcphip | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝐺 ) | 
						
							| 21 | 20 | a1i | ⊢ ( ⊤  →  ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝐺 ) ) | 
						
							| 22 | 21 | oveqdr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖 ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 23 | 2 5 9 10 13 14 18 22 | phlpropd | ⊢ ( ⊤  →  ( 𝑊  ∈  PreHil  ↔  𝐺  ∈  PreHil ) ) | 
						
							| 24 | 23 | mptru | ⊢ ( 𝑊  ∈  PreHil  ↔  𝐺  ∈  PreHil ) |