Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
1 3
|
tcphbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) |
5 |
4
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
7 |
1 6
|
tchplusg |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) |
8 |
7
|
a1i |
⊢ ( ⊤ → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) ) |
9 |
8
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
10 |
|
eqidd |
⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
1 11
|
tcphsca |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) |
13 |
12
|
a1i |
⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
16 |
1 15
|
tcphvsca |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
17 |
16
|
a1i |
⊢ ( ⊤ → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) ) |
18 |
17
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ) |
19 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
20 |
1 19
|
tcphip |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) |
21 |
20
|
a1i |
⊢ ( ⊤ → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) ) |
22 |
21
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐺 ) 𝑦 ) ) |
23 |
2 5 9 10 13 14 18 22
|
phlpropd |
⊢ ( ⊤ → ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) ) |
24 |
23
|
mptru |
⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |