Metamath Proof Explorer


Theorem tcphphl

Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypothesis tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
Assertion tcphphl ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 eqidd ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 1 3 tcphbas ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 )
5 4 a1i ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) )
6 eqid ( +g𝑊 ) = ( +g𝑊 )
7 1 6 tchplusg ( +g𝑊 ) = ( +g𝐺 )
8 7 a1i ( ⊤ → ( +g𝑊 ) = ( +g𝐺 ) )
9 8 oveqdr ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g𝑊 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
10 eqidd ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) )
11 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
12 1 11 tcphsca ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 )
13 12 a1i ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) )
14 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
15 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
16 1 15 tcphvsca ( ·𝑠𝑊 ) = ( ·𝑠𝐺 )
17 16 a1i ( ⊤ → ( ·𝑠𝑊 ) = ( ·𝑠𝐺 ) )
18 17 oveqdr ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐺 ) 𝑦 ) )
19 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
20 1 19 tcphip ( ·𝑖𝑊 ) = ( ·𝑖𝐺 )
21 20 a1i ( ⊤ → ( ·𝑖𝑊 ) = ( ·𝑖𝐺 ) )
22 21 oveqdr ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖𝐺 ) 𝑦 ) )
23 2 5 9 10 13 14 18 22 phlpropd ( ⊤ → ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) )
24 23 mptru ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil )