Description: The scalar field of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
tcphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
Assertion | tcphsca | ⊢ 𝐹 = ( Scalar ‘ 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
2 | tcphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
4 | 3 | tcphex | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V |
5 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
6 | 1 3 5 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
7 | 6 2 | tngsca | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V → 𝐹 = ( Scalar ‘ 𝐺 ) ) |
8 | 4 7 | ax-mp | ⊢ 𝐹 = ( Scalar ‘ 𝐺 ) |