Metamath Proof Explorer


Theorem tcphsub

Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphsub.v = ( -g𝑊 )
Assertion tcphsub = ( -g𝐺 )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphsub.v = ( -g𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 1 3 tcphbas ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 )
5 4 a1i ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) )
6 eqid ( +g𝑊 ) = ( +g𝑊 )
7 1 6 tchplusg ( +g𝑊 ) = ( +g𝐺 )
8 7 a1i ( ⊤ → ( +g𝑊 ) = ( +g𝐺 ) )
9 5 8 grpsubpropd ( ⊤ → ( -g𝑊 ) = ( -g𝐺 ) )
10 9 mptru ( -g𝑊 ) = ( -g𝐺 )
11 2 10 eqtri = ( -g𝐺 )