| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
| 2 |
|
tcphtopn.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
| 3 |
|
tcphtopn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
4
|
tcphex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V |
| 6 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 7 |
1 4 6
|
tcphval |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 9 |
7 2 8
|
tngtopn |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) ) |
| 10 |
5 9
|
mpan2 |
⊢ ( 𝑊 ∈ 𝑉 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) ) |
| 11 |
3 10
|
eqtr4id |
⊢ ( 𝑊 ∈ 𝑉 → 𝐽 = ( MetOpen ‘ 𝐷 ) ) |