Metamath Proof Explorer


Theorem tcphtopn

Description: The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
tcphtopn.d 𝐷 = ( dist ‘ 𝐺 )
tcphtopn.j 𝐽 = ( TopOpen ‘ 𝐺 )
Assertion tcphtopn ( 𝑊𝑉𝐽 = ( MetOpen ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 tcphtopn.d 𝐷 = ( dist ‘ 𝐺 )
3 tcphtopn.j 𝐽 = ( TopOpen ‘ 𝐺 )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 4 tcphex ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V
6 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
7 1 4 6 tcphval 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
8 eqid ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 )
9 7 2 8 tngtopn ( ( 𝑊𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) )
10 5 9 mpan2 ( 𝑊𝑉 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐺 ) )
11 3 10 eqtr4id ( 𝑊𝑉𝐽 = ( MetOpen ‘ 𝐷 ) )