| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | tcphval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | tcphval.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 4 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  𝑉 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ·𝑖 ‘ 𝑤 )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 8 | 7 3 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ·𝑖 ‘ 𝑤 )  =   ,  ) | 
						
							| 9 | 8 | oveqd | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 )  =  ( 𝑥  ,  𝑥 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑤  =  𝑊  →  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) )  =  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) | 
						
							| 11 | 6 10 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( Base ‘ 𝑤 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) )  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) | 
						
							| 12 | 4 11 | oveq12d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  toNrmGrp  ( 𝑥  ∈  ( Base ‘ 𝑤 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) )  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) ) | 
						
							| 13 |  | df-tcph | ⊢ toℂPreHil  =  ( 𝑤  ∈  V  ↦  ( 𝑤  toNrmGrp  ( 𝑥  ∈  ( Base ‘ 𝑤 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) | 
						
							| 14 |  | ovex | ⊢ ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) )  ∈  V | 
						
							| 15 | 12 13 14 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( toℂPreHil ‘ 𝑊 )  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) ) | 
						
							| 16 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( toℂPreHil ‘ 𝑊 )  =  ∅ ) | 
						
							| 17 |  | reldmtng | ⊢ Rel  dom   toNrmGrp | 
						
							| 18 | 17 | ovprc1 | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) )  =  ∅ ) | 
						
							| 19 | 16 18 | eqtr4d | ⊢ ( ¬  𝑊  ∈  V  →  ( toℂPreHil ‘ 𝑊 )  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) ) | 
						
							| 20 | 15 19 | pm2.61i | ⊢ ( toℂPreHil ‘ 𝑊 )  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) | 
						
							| 21 | 1 20 | eqtri | ⊢ 𝐺  =  ( 𝑊  toNrmGrp  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) |