Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
tcphval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
tcphval.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
4 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑖 ‘ 𝑤 ) = ( ·𝑖 ‘ 𝑊 ) ) |
8 |
7 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑖 ‘ 𝑤 ) = , ) |
9 |
8
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) = ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
11 |
6 10
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
12 |
4 11
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
13 |
|
df-tcph |
⊢ toℂPreHil = ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |
14 |
|
ovex |
⊢ ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ∈ V |
15 |
12 13 14
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
16 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ∅ ) |
17 |
|
reldmtng |
⊢ Rel dom toNrmGrp |
18 |
17
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) = ∅ ) |
19 |
16 18
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
20 |
15 19
|
pm2.61i |
⊢ ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
21 |
1 20
|
eqtri |
⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |