Step |
Hyp |
Ref |
Expression |
1 |
|
rankwflemb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) |
2 |
|
suceloni |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
4 |
3
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑧 = 𝑢 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝑢 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = 𝑢 → ( TC ‘ 𝑧 ) = ( TC ‘ 𝑢 ) ) |
7 |
6
|
imaeq2d |
⊢ ( 𝑧 = 𝑢 → ( rank “ ( TC ‘ 𝑧 ) ) = ( rank “ ( TC ‘ 𝑢 ) ) ) |
8 |
5 7
|
sseq12d |
⊢ ( 𝑧 = 𝑢 → ( ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
9 |
8
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
10 |
4 9
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
12 |
11
|
raleqdv |
⊢ ( 𝑥 = suc 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) |
14 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
15 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
16 |
|
rankr1ai |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( rank ‘ 𝑧 ) ∈ 𝑥 ) |
17 |
|
fveq2 |
⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ) |
18 |
17
|
raleqdv |
⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
19 |
18
|
rspcv |
⊢ ( ( rank ‘ 𝑧 ) ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
20 |
16 19
|
syl |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
21 |
|
r1elwf |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) |
22 |
|
r1rankidb |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → 𝑧 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ) |
23 |
|
ssralv |
⊢ ( 𝑧 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
25 |
20 24
|
syld |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
26 |
14 15 25
|
sylc |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
27 |
|
rankval3b |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑧 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) |
28 |
27
|
eleq2d |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) ↔ 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) ) |
29 |
28
|
biimpd |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) ) |
30 |
|
rankon |
⊢ ( rank ‘ 𝑧 ) ∈ On |
31 |
30
|
oneli |
⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ On ) |
32 |
|
eleq2w |
⊢ ( 𝑥 = 𝑤 → ( ( rank ‘ 𝑢 ) ∈ 𝑥 ↔ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 ↔ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
34 |
33
|
onnminsb |
⊢ ( 𝑤 ∈ On → ( 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
35 |
31 34
|
syl |
⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
36 |
29 35
|
sylcom |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
37 |
21 36
|
syl |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
38 |
37
|
imp |
⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
39 |
|
rexnal |
⊢ ( ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ↔ ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
40 |
38 39
|
sylibr |
⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
42 |
|
r19.29 |
⊢ ( ( ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
43 |
26 41 42
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
44 |
|
simp2 |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → 𝑢 ∈ 𝑧 ) |
45 |
|
tcid |
⊢ ( 𝑧 ∈ V → 𝑧 ⊆ ( TC ‘ 𝑧 ) ) |
46 |
45
|
elv |
⊢ 𝑧 ⊆ ( TC ‘ 𝑧 ) |
47 |
46
|
sseli |
⊢ ( 𝑢 ∈ 𝑧 → 𝑢 ∈ ( TC ‘ 𝑧 ) ) |
48 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑢 → ( ( rank ‘ 𝑥 ) = 𝑤 ↔ ( rank ‘ 𝑢 ) = 𝑤 ) ) |
49 |
48
|
rspcev |
⊢ ( ( 𝑢 ∈ ( TC ‘ 𝑧 ) ∧ ( rank ‘ 𝑢 ) = 𝑤 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
50 |
49
|
ex |
⊢ ( 𝑢 ∈ ( TC ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
51 |
44 47 50
|
3syl |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
52 |
|
simp3l |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
53 |
52
|
sseld |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑢 ) → 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
54 |
|
simp1l |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
55 |
|
rankf |
⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On |
56 |
|
ffn |
⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → rank Fn ∪ ( 𝑅1 “ On ) ) |
57 |
55 56
|
ax-mp |
⊢ rank Fn ∪ ( 𝑅1 “ On ) |
58 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ 𝑥 ) |
59 |
|
trel |
⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
60 |
58 59
|
ax-mp |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
61 |
|
r1elwf |
⊢ ( 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑢 ∈ ∪ ( 𝑅1 “ On ) ) |
62 |
|
tcwf |
⊢ ( 𝑢 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑢 ) ∈ ∪ ( 𝑅1 “ On ) ) |
63 |
|
fvex |
⊢ ( TC ‘ 𝑢 ) ∈ V |
64 |
63
|
r1elss |
⊢ ( ( TC ‘ 𝑢 ) ∈ ∪ ( 𝑅1 “ On ) ↔ ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
65 |
62 64
|
sylib |
⊢ ( 𝑢 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
66 |
60 61 65
|
3syl |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
67 |
|
fvelimab |
⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
68 |
57 66 67
|
sylancr |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
69 |
|
vex |
⊢ 𝑧 ∈ V |
70 |
69
|
tcel |
⊢ ( 𝑢 ∈ 𝑧 → ( TC ‘ 𝑢 ) ⊆ ( TC ‘ 𝑧 ) ) |
71 |
|
ssrexv |
⊢ ( ( TC ‘ 𝑢 ) ⊆ ( TC ‘ 𝑧 ) → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
72 |
70 71
|
syl |
⊢ ( 𝑢 ∈ 𝑧 → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
74 |
68 73
|
sylbid |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
75 |
44 54 74
|
syl2anc |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
76 |
53 75
|
syld |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑢 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
77 |
|
rankon |
⊢ ( rank ‘ 𝑢 ) ∈ On |
78 |
|
eloni |
⊢ ( ( rank ‘ 𝑢 ) ∈ On → Ord ( rank ‘ 𝑢 ) ) |
79 |
|
eloni |
⊢ ( 𝑤 ∈ On → Ord 𝑤 ) |
80 |
|
ordtri3or |
⊢ ( ( Ord ( rank ‘ 𝑢 ) ∧ Ord 𝑤 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
81 |
78 79 80
|
syl2an |
⊢ ( ( ( rank ‘ 𝑢 ) ∈ On ∧ 𝑤 ∈ On ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
82 |
77 31 81
|
sylancr |
⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
83 |
|
3orass |
⊢ ( ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ↔ ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) ) |
84 |
82 83
|
sylib |
⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) ) |
85 |
84
|
orcanai |
⊢ ( ( 𝑤 ∈ ( rank ‘ 𝑧 ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
86 |
85
|
ad2ant2l |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
87 |
86
|
3adant2 |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
88 |
51 76 87
|
mpjaod |
⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
89 |
88
|
rexlimdv3a |
⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ( ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
90 |
13 43 89
|
sylc |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
91 |
90
|
expr |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
92 |
|
tcwf |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) ) |
93 |
|
r1elssi |
⊢ ( ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
94 |
|
fvelimab |
⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
95 |
93 94
|
sylan2 |
⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
96 |
57 92 95
|
sylancr |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
97 |
21 96
|
syl |
⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
99 |
91 98
|
sylibrd |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
100 |
99
|
ssrdv |
⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
101 |
100
|
ralrimiva |
⊢ ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) → ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
102 |
101
|
ex |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
103 |
10 12 102
|
tfis3 |
⊢ ( suc 𝑦 ∈ On → ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
104 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝐴 ) ) |
105 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( TC ‘ 𝑧 ) = ( TC ‘ 𝐴 ) ) |
106 |
105
|
imaeq2d |
⊢ ( 𝑧 = 𝐴 → ( rank “ ( TC ‘ 𝑧 ) ) = ( rank “ ( TC ‘ 𝐴 ) ) ) |
107 |
104 106
|
sseq12d |
⊢ ( 𝑧 = 𝐴 → ( ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
108 |
107
|
rspccv |
⊢ ( ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
109 |
2 103 108
|
3syl |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
110 |
109
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) |
111 |
1 110
|
sylbi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) |
112 |
|
tcvalg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
113 |
|
r1rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
114 |
|
r1tr |
⊢ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
115 |
|
fvex |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ V |
116 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
117 |
|
treq |
⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( Tr 𝑥 ↔ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
118 |
116 117
|
anbi12d |
⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) ) |
119 |
115 118
|
elab |
⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
120 |
|
intss1 |
⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
121 |
119 120
|
sylbir |
⊢ ( ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
122 |
113 114 121
|
sylancl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
123 |
112 122
|
eqsstrd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
124 |
|
imass2 |
⊢ ( ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
125 |
|
ffun |
⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → Fun rank ) |
126 |
55 125
|
ax-mp |
⊢ Fun rank |
127 |
|
fvelima |
⊢ ( ( Fun rank ∧ 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) → ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 ) |
128 |
126 127
|
mpan |
⊢ ( 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 ) |
129 |
|
rankr1ai |
⊢ ( 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) |
130 |
|
eleq1 |
⊢ ( ( rank ‘ 𝑦 ) = 𝑥 → ( ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ↔ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
131 |
129 130
|
syl5ibcom |
⊢ ( 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( ( rank ‘ 𝑦 ) = 𝑥 → 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
132 |
131
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 → 𝑥 ∈ ( rank ‘ 𝐴 ) ) |
133 |
128 132
|
syl |
⊢ ( 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → 𝑥 ∈ ( rank ‘ 𝐴 ) ) |
134 |
133
|
ssriv |
⊢ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ⊆ ( rank ‘ 𝐴 ) |
135 |
124 134
|
sstrdi |
⊢ ( ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank ‘ 𝐴 ) ) |
136 |
123 135
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank ‘ 𝐴 ) ) |
137 |
111 136
|
eqssd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ( rank “ ( TC ‘ 𝐴 ) ) ) |