| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tc2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 | 1 | snss | ⊢ ( 𝐴  ∈  𝑥  ↔  { 𝐴 }  ⊆  𝑥 ) | 
						
							| 3 | 2 | anbi1i | ⊢ ( ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 )  ↔  ( { 𝐴 }  ⊆  𝑥  ∧  Tr  𝑥 ) ) | 
						
							| 4 | 3 | abbii | ⊢ { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  =  { 𝑥  ∣  ( { 𝐴 }  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 5 | 4 | inteqi | ⊢ ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) }  =  ∩  { 𝑥  ∣  ( { 𝐴 }  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 6 | 1 | tc2 | ⊢ ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } )  =  ∩  { 𝑥  ∣  ( 𝐴  ∈  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 7 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 8 |  | tcvalg | ⊢ ( { 𝐴 }  ∈  V  →  ( TC ‘ { 𝐴 } )  =  ∩  { 𝑥  ∣  ( { 𝐴 }  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( TC ‘ { 𝐴 } )  =  ∩  { 𝑥  ∣  ( { 𝐴 }  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 10 | 5 6 9 | 3eqtr4ri | ⊢ ( TC ‘ { 𝐴 } )  =  ( ( TC ‘ 𝐴 )  ∪  { 𝐴 } ) |