Step |
Hyp |
Ref |
Expression |
1 |
|
tc2.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
ssex |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ V ) |
3 |
|
tcvalg |
⊢ ( 𝐵 ∈ V → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
4 |
2 3
|
syl |
⊢ ( 𝐵 ⊆ 𝐴 → ( TC ‘ 𝐵 ) = ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
5 |
|
sstr2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
6 |
5
|
anim1d |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
7 |
6
|
ss2abdv |
⊢ ( 𝐵 ⊆ 𝐴 → { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
8 |
|
intss |
⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
9 |
7 8
|
syl |
⊢ ( 𝐵 ⊆ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
10 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
11 |
1 10
|
ax-mp |
⊢ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
12 |
9 11
|
sseqtrrdi |
⊢ ( 𝐵 ⊆ 𝐴 → ∩ { 𝑥 ∣ ( 𝐵 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( TC ‘ 𝐴 ) ) |
13 |
4 12
|
eqsstrd |
⊢ ( 𝐵 ⊆ 𝐴 → ( TC ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |