Step |
Hyp |
Ref |
Expression |
1 |
|
trint |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } Tr 𝑦 → Tr ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦 ) ) |
4 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) ) ) |
6 |
2 5
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) ) |
7 |
6
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → Tr 𝑦 ) |
8 |
1 7
|
mprg |
⊢ Tr ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
9 |
|
tcvalg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
10 |
|
treq |
⊢ ( ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ( Tr ( TC ‘ 𝐴 ) ↔ Tr ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ V → ( Tr ( TC ‘ 𝐴 ) ↔ Tr ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
12 |
8 11
|
mpbiri |
⊢ ( 𝐴 ∈ V → Tr ( TC ‘ 𝐴 ) ) |
13 |
|
tr0 |
⊢ Tr ∅ |
14 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∅ ) |
15 |
|
treq |
⊢ ( ( TC ‘ 𝐴 ) = ∅ → ( Tr ( TC ‘ 𝐴 ) ↔ Tr ∅ ) ) |
16 |
14 15
|
syl |
⊢ ( ¬ 𝐴 ∈ V → ( Tr ( TC ‘ 𝐴 ) ↔ Tr ∅ ) ) |
17 |
13 16
|
mpbiri |
⊢ ( ¬ 𝐴 ∈ V → Tr ( TC ‘ 𝐴 ) ) |
18 |
12 17
|
pm2.61i |
⊢ Tr ( TC ‘ 𝐴 ) |