Metamath Proof Explorer


Theorem tcvalg

Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf ; see tz9.1 .) (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcvalg ( 𝐴𝑉 → ( TC ‘ 𝐴 ) = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑦 = 𝐴 → ( TC ‘ 𝑦 ) = ( TC ‘ 𝐴 ) )
2 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
3 2 anbi1d ( 𝑦 = 𝐴 → ( ( 𝑦𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴𝑥 ∧ Tr 𝑥 ) ) )
4 3 abbidv ( 𝑦 = 𝐴 → { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )
5 4 inteqd ( 𝑦 = 𝐴 { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )
6 1 5 eqeq12d ( 𝑦 = 𝐴 → ( ( TC ‘ 𝑦 ) = { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } ↔ ( TC ‘ 𝐴 ) = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ) )
7 vex 𝑦 ∈ V
8 7 tz9.1c { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } ∈ V
9 df-tc TC = ( 𝑦 ∈ V ↦ { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } )
10 9 fvmpt2 ( ( 𝑦 ∈ V ∧ { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ( TC ‘ 𝑦 ) = { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) } )
11 7 8 10 mp2an ( TC ‘ 𝑦 ) = { 𝑥 ∣ ( 𝑦𝑥 ∧ Tr 𝑥 ) }
12 6 11 vtoclg ( 𝐴𝑉 → ( TC ‘ 𝐴 ) = { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } )