| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( TC ‘ 𝑦 )  =  ( TC ‘ 𝐴 ) ) | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ⊆  𝑥  ↔  𝐴  ⊆  𝑥 ) ) | 
						
							| 3 | 2 | anbi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 )  ↔  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) ) ) | 
						
							| 4 | 3 | abbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) }  =  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 5 | 4 | inteqd | ⊢ ( 𝑦  =  𝐴  →  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) }  =  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 6 | 1 5 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( TC ‘ 𝑦 )  =  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) }  ↔  ( TC ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } ) ) | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 | 7 | tz9.1c | ⊢ ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) }  ∈  V | 
						
							| 9 |  | df-tc | ⊢ TC  =  ( 𝑦  ∈  V  ↦  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 10 | 9 | fvmpt2 | ⊢ ( ( 𝑦  ∈  V  ∧  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) }  ∈  V )  →  ( TC ‘ 𝑦 )  =  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) } ) | 
						
							| 11 | 7 8 10 | mp2an | ⊢ ( TC ‘ 𝑦 )  =  ∩  { 𝑥  ∣  ( 𝑦  ⊆  𝑥  ∧  Tr  𝑥 ) } | 
						
							| 12 | 6 11 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ( TC ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ( 𝐴  ⊆  𝑥  ∧  Tr  𝑥 ) } ) |