Step |
Hyp |
Ref |
Expression |
1 |
|
tdeglem.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
2 |
|
tdeglem.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
3 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐼 ¬ ( 𝑋 ‘ 𝑥 ) = 0 ↔ ¬ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) |
4 |
|
df-ne |
⊢ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
5 |
|
oveq2 |
⊢ ( ℎ = 𝑋 → ( ℂfld Σg ℎ ) = ( ℂfld Σg 𝑋 ) ) |
6 |
|
ovex |
⊢ ( ℂfld Σg 𝑋 ) ∈ V |
7 |
5 2 6
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐻 ‘ 𝑋 ) = ( ℂfld Σg 𝑋 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) = ( ℂfld Σg 𝑋 ) ) |
9 |
1
|
psrbagf |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
10 |
9
|
feqmptd |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg 𝑋 ) = ( ℂfld Σg ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) |
13 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
14 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
15 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
16 |
|
cnring |
⊢ ℂfld ∈ Ring |
17 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
18 |
16 17
|
mp1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ℂfld ∈ CMnd ) |
19 |
|
id |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴 ) |
20 |
9
|
ffnd |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 Fn 𝐼 ) |
21 |
19 20
|
fndmexd |
⊢ ( 𝑋 ∈ 𝐴 → 𝐼 ∈ V ) |
22 |
21
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝐼 ∈ V ) |
23 |
9
|
ffvelrnda |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
24 |
23
|
nn0cnd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
26 |
1
|
psrbagfsupp |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 finSupp 0 ) |
27 |
10 26
|
eqbrtrrd |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
28 |
27
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
29 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ |
30 |
29
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) |
31 |
|
difsnid |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐼 ) |
32 |
31
|
eqcomd |
⊢ ( 𝑥 ∈ 𝐼 → 𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
34 |
13 14 15 18 22 25 28 30 33
|
gsumsplit2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
35 |
8 12 34
|
3eqtrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
36 |
22
|
difexd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐼 ∖ { 𝑥 } ) ∈ V ) |
37 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
38 |
37
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) |
39 |
9
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
40 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) → 𝑦 ∈ 𝐼 ) |
41 |
|
ffvelrn |
⊢ ( ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
42 |
39 40 41
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
43 |
42
|
fmpttd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) : ( 𝐼 ∖ { 𝑥 } ) ⟶ ℕ0 ) |
44 |
36
|
mptexd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
45 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) |
46 |
45
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
47 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) |
48 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 |
49 |
|
mptss |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
50 |
48 49
|
ax-mp |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) |
51 |
22
|
mptexd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
52 |
|
funsssuppss |
⊢ ( ( Fun ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) |
53 |
47 50 51 52
|
mp3an12i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) |
54 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ∧ Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∧ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ∧ ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
55 |
44 46 28 53 54
|
syl22anc |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
56 |
14 18 36 38 43 55
|
gsumsubmcl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ0 ) |
57 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
58 |
16 57
|
ax-mp |
⊢ ℂfld ∈ Mnd |
59 |
|
simprl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑥 ∈ 𝐼 ) |
60 |
39 59
|
ffvelrnd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ0 ) |
61 |
60
|
nn0cnd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
62 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑥 ) ) |
63 |
13 62
|
gsumsn |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) |
64 |
58 59 61 63
|
mp3an2i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) |
65 |
|
elnn0 |
⊢ ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
66 |
60 65
|
sylib |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
67 |
|
neneq |
⊢ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
68 |
67
|
ad2antll |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
69 |
66 68
|
olcnd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ ) |
70 |
64 69
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ ) |
71 |
|
nn0nnaddcl |
⊢ ( ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ0 ∧ ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ∈ ℕ ) |
72 |
56 70 71
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ∈ ℕ ) |
73 |
72
|
nnne0d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ≠ 0 ) |
74 |
35 73
|
eqnetrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) |
75 |
74
|
expr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
76 |
4 75
|
syl5bir |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
77 |
76
|
rexlimdva |
⊢ ( 𝑋 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐼 ¬ ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
78 |
3 77
|
syl5bir |
⊢ ( 𝑋 ∈ 𝐴 → ( ¬ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
79 |
78
|
necon4bd |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑋 ) = 0 → ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
80 |
|
c0ex |
⊢ 0 ∈ V |
81 |
|
fnconstg |
⊢ ( 0 ∈ V → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
82 |
80 81
|
mp1i |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
83 |
|
eqfnfv |
⊢ ( ( 𝑋 Fn 𝐼 ∧ ( 𝐼 × { 0 } ) Fn 𝐼 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) ) |
84 |
20 82 83
|
syl2anc |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) ) |
85 |
80
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) |
86 |
85
|
eqeq2d |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
87 |
86
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) |
88 |
84 87
|
bitrdi |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
89 |
79 88
|
sylibrd |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑋 ) = 0 → 𝑋 = ( 𝐼 × { 0 } ) ) ) |
90 |
1
|
psrbag0 |
⊢ ( 𝐼 ∈ V → ( 𝐼 × { 0 } ) ∈ 𝐴 ) |
91 |
|
oveq2 |
⊢ ( ℎ = ( 𝐼 × { 0 } ) → ( ℂfld Σg ℎ ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
92 |
|
ovex |
⊢ ( ℂfld Σg ( 𝐼 × { 0 } ) ) ∈ V |
93 |
91 2 92
|
fvmpt |
⊢ ( ( 𝐼 × { 0 } ) ∈ 𝐴 → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
94 |
21 90 93
|
3syl |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
95 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
96 |
95
|
oveq2i |
⊢ ( ℂfld Σg ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
97 |
14
|
gsumz |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝐼 ∈ V ) → ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
98 |
58 21 97
|
sylancr |
⊢ ( 𝑋 ∈ 𝐴 → ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
99 |
96 98
|
syl5eq |
⊢ ( 𝑋 ∈ 𝐴 → ( ℂfld Σg ( 𝐼 × { 0 } ) ) = 0 ) |
100 |
94 99
|
eqtrd |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 ) |
101 |
|
fveqeq2 |
⊢ ( 𝑋 = ( 𝐼 × { 0 } ) → ( ( 𝐻 ‘ 𝑋 ) = 0 ↔ ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 ) ) |
102 |
100 101
|
syl5ibrcom |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 = ( 𝐼 × { 0 } ) → ( 𝐻 ‘ 𝑋 ) = 0 ) ) |
103 |
89 102
|
impbid |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑋 ) = 0 ↔ 𝑋 = ( 𝐼 × { 0 } ) ) ) |