Metamath Proof Explorer


Theorem tdeglem4OLD

Description: Obsolete version of tdeglem4 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses tdeglem.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
tdeglem.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
Assertion tdeglem4OLD ( ( 𝐼𝑉𝑋𝐴 ) → ( ( 𝐻𝑋 ) = 0 ↔ 𝑋 = ( 𝐼 × { 0 } ) ) )

Proof

Step Hyp Ref Expression
1 tdeglem.a 𝐴 = { 𝑚 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑚 “ ℕ ) ∈ Fin }
2 tdeglem.h 𝐻 = ( 𝐴 ↦ ( ℂfld Σg ) )
3 rexnal ( ∃ 𝑥𝐼 ¬ ( 𝑋𝑥 ) = 0 ↔ ¬ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = 0 )
4 df-ne ( ( 𝑋𝑥 ) ≠ 0 ↔ ¬ ( 𝑋𝑥 ) = 0 )
5 oveq2 ( = 𝑋 → ( ℂfld Σg ) = ( ℂfld Σg 𝑋 ) )
6 ovex ( ℂfld Σg 𝑋 ) ∈ V
7 5 2 6 fvmpt ( 𝑋𝐴 → ( 𝐻𝑋 ) = ( ℂfld Σg 𝑋 ) )
8 7 ad2antlr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝐻𝑋 ) = ( ℂfld Σg 𝑋 ) )
9 1 psrbagfOLD ( ( 𝐼𝑉𝑋𝐴 ) → 𝑋 : 𝐼 ⟶ ℕ0 )
10 9 feqmptd ( ( 𝐼𝑉𝑋𝐴 ) → 𝑋 = ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) )
11 10 adantr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝑋 = ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) )
12 11 oveq2d ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ℂfld Σg 𝑋 ) = ( ℂfld Σg ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ) )
13 cnfldbas ℂ = ( Base ‘ ℂfld )
14 cnfld0 0 = ( 0g ‘ ℂfld )
15 cnfldadd + = ( +g ‘ ℂfld )
16 cnring fld ∈ Ring
17 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
18 16 17 mp1i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ℂfld ∈ CMnd )
19 simpll ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝐼𝑉 )
20 9 adantr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝑋 : 𝐼 ⟶ ℕ0 )
21 20 ffvelrnda ( ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) ∧ 𝑦𝐼 ) → ( 𝑋𝑦 ) ∈ ℕ0 )
22 21 nn0cnd ( ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) ∧ 𝑦𝐼 ) → ( 𝑋𝑦 ) ∈ ℂ )
23 1 psrbagfsuppOLD ( ( 𝑋𝐴𝐼𝑉 ) → 𝑋 finSupp 0 )
24 23 ancoms ( ( 𝐼𝑉𝑋𝐴 ) → 𝑋 finSupp 0 )
25 24 adantr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝑋 finSupp 0 )
26 11 25 eqbrtrrd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) finSupp 0 )
27 incom ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) )
28 disjdif ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) ) = ∅
29 27 28 eqtri ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅
30 29 a1i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ )
31 difsnid ( 𝑥𝐼 → ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐼 )
32 31 eqcomd ( 𝑥𝐼𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) )
33 32 ad2antrl ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) )
34 13 14 15 18 19 22 26 30 33 gsumsplit2 ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ) )
35 8 12 34 3eqtrd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝐻𝑋 ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ) )
36 difexg ( 𝐼𝑉 → ( 𝐼 ∖ { 𝑥 } ) ∈ V )
37 36 ad2antrr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝐼 ∖ { 𝑥 } ) ∈ V )
38 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
39 38 a1i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ℕ0 ∈ ( SubMnd ‘ ℂfld ) )
40 eldifi ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) → 𝑦𝐼 )
41 ffvelrn ( ( 𝑋 : 𝐼 ⟶ ℕ0𝑦𝐼 ) → ( 𝑋𝑦 ) ∈ ℕ0 )
42 20 40 41 syl2an ( ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑋𝑦 ) ∈ ℕ0 )
43 42 fmpttd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) : ( 𝐼 ∖ { 𝑥 } ) ⟶ ℕ0 )
44 36 mptexd ( 𝐼𝑉 → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ∈ V )
45 44 ad2antrr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ∈ V )
46 funmpt Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) )
47 46 a1i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) )
48 funmpt Fun ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) )
49 difss ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼
50 resmpt ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) )
51 49 50 ax-mp ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) )
52 resss ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) )
53 51 52 eqsstrri ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ⊆ ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) )
54 mptexg ( 𝐼𝑉 → ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ∈ V )
55 54 ad2antrr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ∈ V )
56 funsssuppss ( ( Fun ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ∧ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ⊆ ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ∧ ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) supp 0 ) )
57 48 53 55 56 mp3an12i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) supp 0 ) )
58 fsuppsssupp ( ( ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ∈ V ∧ Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) ∧ ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) finSupp 0 ∧ ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦𝐼 ↦ ( 𝑋𝑦 ) ) supp 0 ) ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) finSupp 0 )
59 45 47 26 57 58 syl22anc ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) finSupp 0 )
60 14 18 37 39 43 59 gsumsubmcl ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) ∈ ℕ0 )
61 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
62 16 61 mp1i ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ℂfld ∈ Mnd )
63 simprl ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → 𝑥𝐼 )
64 20 63 ffvelrnd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑋𝑥 ) ∈ ℕ0 )
65 64 nn0cnd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑋𝑥 ) ∈ ℂ )
66 fveq2 ( 𝑦 = 𝑥 → ( 𝑋𝑦 ) = ( 𝑋𝑥 ) )
67 13 66 gsumsn ( ( ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ ( 𝑋𝑥 ) ∈ ℂ ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) = ( 𝑋𝑥 ) )
68 62 63 65 67 syl3anc ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) = ( 𝑋𝑥 ) )
69 simprr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑋𝑥 ) ≠ 0 )
70 69 4 sylib ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ¬ ( 𝑋𝑥 ) = 0 )
71 elnn0 ( ( 𝑋𝑥 ) ∈ ℕ0 ↔ ( ( 𝑋𝑥 ) ∈ ℕ ∨ ( 𝑋𝑥 ) = 0 ) )
72 64 71 sylib ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ( 𝑋𝑥 ) ∈ ℕ ∨ ( 𝑋𝑥 ) = 0 ) )
73 orel2 ( ¬ ( 𝑋𝑥 ) = 0 → ( ( ( 𝑋𝑥 ) ∈ ℕ ∨ ( 𝑋𝑥 ) = 0 ) → ( 𝑋𝑥 ) ∈ ℕ ) )
74 70 72 73 sylc ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝑋𝑥 ) ∈ ℕ )
75 68 74 eqeltrd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ∈ ℕ )
76 nn0nnaddcl ( ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) ∈ ℕ0 ∧ ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ∈ ℕ ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ) ∈ ℕ )
77 60 75 76 syl2anc ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ) ∈ ℕ )
78 77 nnne0d ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋𝑦 ) ) ) ) ≠ 0 )
79 35 78 eqnetrd ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ ( 𝑥𝐼 ∧ ( 𝑋𝑥 ) ≠ 0 ) ) → ( 𝐻𝑋 ) ≠ 0 )
80 79 expr ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ 𝑥𝐼 ) → ( ( 𝑋𝑥 ) ≠ 0 → ( 𝐻𝑋 ) ≠ 0 ) )
81 4 80 syl5bir ( ( ( 𝐼𝑉𝑋𝐴 ) ∧ 𝑥𝐼 ) → ( ¬ ( 𝑋𝑥 ) = 0 → ( 𝐻𝑋 ) ≠ 0 ) )
82 81 rexlimdva ( ( 𝐼𝑉𝑋𝐴 ) → ( ∃ 𝑥𝐼 ¬ ( 𝑋𝑥 ) = 0 → ( 𝐻𝑋 ) ≠ 0 ) )
83 3 82 syl5bir ( ( 𝐼𝑉𝑋𝐴 ) → ( ¬ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = 0 → ( 𝐻𝑋 ) ≠ 0 ) )
84 83 necon4bd ( ( 𝐼𝑉𝑋𝐴 ) → ( ( 𝐻𝑋 ) = 0 → ∀ 𝑥𝐼 ( 𝑋𝑥 ) = 0 ) )
85 9 ffnd ( ( 𝐼𝑉𝑋𝐴 ) → 𝑋 Fn 𝐼 )
86 0nn0 0 ∈ ℕ0
87 fnconstg ( 0 ∈ ℕ0 → ( 𝐼 × { 0 } ) Fn 𝐼 )
88 86 87 mp1i ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝐼 × { 0 } ) Fn 𝐼 )
89 eqfnfv ( ( 𝑋 Fn 𝐼 ∧ ( 𝐼 × { 0 } ) Fn 𝐼 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) )
90 85 88 89 syl2anc ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) )
91 c0ex 0 ∈ V
92 91 fvconst2 ( 𝑥𝐼 → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 )
93 92 eqeq2d ( 𝑥𝐼 → ( ( 𝑋𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ( 𝑋𝑥 ) = 0 ) )
94 93 ralbiia ( ∀ 𝑥𝐼 ( 𝑋𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = 0 )
95 90 94 bitrdi ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥𝐼 ( 𝑋𝑥 ) = 0 ) )
96 84 95 sylibrd ( ( 𝐼𝑉𝑋𝐴 ) → ( ( 𝐻𝑋 ) = 0 → 𝑋 = ( 𝐼 × { 0 } ) ) )
97 1 psrbag0 ( 𝐼𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐴 )
98 97 adantr ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝐼 × { 0 } ) ∈ 𝐴 )
99 oveq2 ( = ( 𝐼 × { 0 } ) → ( ℂfld Σg ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) )
100 ovex ( ℂfld Σg ( 𝐼 × { 0 } ) ) ∈ V
101 99 2 100 fvmpt ( ( 𝐼 × { 0 } ) ∈ 𝐴 → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) )
102 98 101 syl ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) )
103 fconstmpt ( 𝐼 × { 0 } ) = ( 𝑥𝐼 ↦ 0 )
104 103 oveq2i ( ℂfld Σg ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝑥𝐼 ↦ 0 ) )
105 16 61 ax-mp fld ∈ Mnd
106 14 gsumz ( ( ℂfld ∈ Mnd ∧ 𝐼𝑉 ) → ( ℂfld Σg ( 𝑥𝐼 ↦ 0 ) ) = 0 )
107 105 106 mpan ( 𝐼𝑉 → ( ℂfld Σg ( 𝑥𝐼 ↦ 0 ) ) = 0 )
108 107 adantr ( ( 𝐼𝑉𝑋𝐴 ) → ( ℂfld Σg ( 𝑥𝐼 ↦ 0 ) ) = 0 )
109 104 108 syl5eq ( ( 𝐼𝑉𝑋𝐴 ) → ( ℂfld Σg ( 𝐼 × { 0 } ) ) = 0 )
110 102 109 eqtrd ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 )
111 fveqeq2 ( 𝑋 = ( 𝐼 × { 0 } ) → ( ( 𝐻𝑋 ) = 0 ↔ ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 ) )
112 110 111 syl5ibrcom ( ( 𝐼𝑉𝑋𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) → ( 𝐻𝑋 ) = 0 ) )
113 96 112 impbid ( ( 𝐼𝑉𝑋𝐴 ) → ( ( 𝐻𝑋 ) = 0 ↔ 𝑋 = ( 𝐼 × { 0 } ) ) )