Step |
Hyp |
Ref |
Expression |
1 |
|
tdeglem.a |
⊢ 𝐴 = { 𝑚 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑚 “ ℕ ) ∈ Fin } |
2 |
|
tdeglem.h |
⊢ 𝐻 = ( ℎ ∈ 𝐴 ↦ ( ℂfld Σg ℎ ) ) |
3 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐼 ¬ ( 𝑋 ‘ 𝑥 ) = 0 ↔ ¬ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) |
4 |
|
df-ne |
⊢ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
5 |
|
oveq2 |
⊢ ( ℎ = 𝑋 → ( ℂfld Σg ℎ ) = ( ℂfld Σg 𝑋 ) ) |
6 |
|
ovex |
⊢ ( ℂfld Σg 𝑋 ) ∈ V |
7 |
5 2 6
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝐻 ‘ 𝑋 ) = ( ℂfld Σg 𝑋 ) ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) = ( ℂfld Σg 𝑋 ) ) |
9 |
1
|
psrbagfOLD |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
10 |
9
|
feqmptd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑋 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg 𝑋 ) = ( ℂfld Σg ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) |
13 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
14 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
15 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
16 |
|
cnring |
⊢ ℂfld ∈ Ring |
17 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
18 |
16 17
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ℂfld ∈ CMnd ) |
19 |
|
simpll |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝐼 ∈ 𝑉 ) |
20 |
9
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
21 |
20
|
ffvelrnda |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
22 |
21
|
nn0cnd |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
23 |
1
|
psrbagfsuppOLD |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐼 ∈ 𝑉 ) → 𝑋 finSupp 0 ) |
24 |
23
|
ancoms |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 finSupp 0 ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑋 finSupp 0 ) |
26 |
11 25
|
eqbrtrrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
27 |
|
incom |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) ) |
28 |
|
disjdif |
⊢ ( { 𝑥 } ∩ ( 𝐼 ∖ { 𝑥 } ) ) = ∅ |
29 |
27 28
|
eqtri |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ |
30 |
29
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝐼 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) |
31 |
|
difsnid |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐼 ) |
32 |
31
|
eqcomd |
⊢ ( 𝑥 ∈ 𝐼 → 𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝐼 = ( ( 𝐼 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
34 |
13 14 15 18 19 22 26 30 33
|
gsumsplit2 |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
35 |
8 12 34
|
3eqtrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) = ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
36 |
|
difexg |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 ∖ { 𝑥 } ) ∈ V ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐼 ∖ { 𝑥 } ) ∈ V ) |
38 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
39 |
38
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) |
40 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) → 𝑦 ∈ 𝐼 ) |
41 |
|
ffvelrn |
⊢ ( ( 𝑋 : 𝐼 ⟶ ℕ0 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
42 |
20 40 41
|
syl2an |
⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) ∧ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℕ0 ) |
43 |
42
|
fmpttd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) : ( 𝐼 ∖ { 𝑥 } ) ⟶ ℕ0 ) |
44 |
36
|
mptexd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
46 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) |
47 |
46
|
a1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
48 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) |
49 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 |
50 |
|
resmpt |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
51 |
49 50
|
ax-mp |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) |
52 |
|
resss |
⊢ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ↾ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) |
53 |
51 52
|
eqsstrri |
⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) |
54 |
|
mptexg |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) |
56 |
|
funsssuppss |
⊢ ( ( Fun ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) |
57 |
48 53 55 56
|
mp3an12i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) |
58 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ∈ V ∧ Fun ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∧ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ∧ ( ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑦 ) ) supp 0 ) ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
59 |
45 47 26 57 58
|
syl22anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) finSupp 0 ) |
60 |
14 18 37 39 43 59
|
gsumsubmcl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ0 ) |
61 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
62 |
16 61
|
mp1i |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ℂfld ∈ Mnd ) |
63 |
|
simprl |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → 𝑥 ∈ 𝐼 ) |
64 |
20 63
|
ffvelrnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ0 ) |
65 |
64
|
nn0cnd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
66 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑥 ) ) |
67 |
13 66
|
gsumsn |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) |
68 |
62 63 65 67
|
syl3anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) = ( 𝑋 ‘ 𝑥 ) ) |
69 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ≠ 0 ) |
70 |
69 4
|
sylib |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
71 |
|
elnn0 |
⊢ ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
72 |
64 71
|
sylib |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
73 |
|
orel2 |
⊢ ( ¬ ( 𝑋 ‘ 𝑥 ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑋 ‘ 𝑥 ) = 0 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ ) ) |
74 |
70 72 73
|
sylc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℕ ) |
75 |
68 74
|
eqeltrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ ) |
76 |
|
nn0nnaddcl |
⊢ ( ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ0 ∧ ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ∈ ℕ ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ∈ ℕ ) |
77 |
60 75 76
|
syl2anc |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ∈ ℕ ) |
78 |
77
|
nnne0d |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℂfld Σg ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↦ ( 𝑋 ‘ 𝑦 ) ) ) + ( ℂfld Σg ( 𝑦 ∈ { 𝑥 } ↦ ( 𝑋 ‘ 𝑦 ) ) ) ) ≠ 0 ) |
79 |
35 78
|
eqnetrd |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) |
80 |
79
|
expr |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
81 |
4 80
|
syl5bir |
⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐼 ) → ( ¬ ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
82 |
81
|
rexlimdva |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐼 ¬ ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
83 |
3 82
|
syl5bir |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 → ( 𝐻 ‘ 𝑋 ) ≠ 0 ) ) |
84 |
83
|
necon4bd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑋 ) = 0 → ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
85 |
9
|
ffnd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 Fn 𝐼 ) |
86 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
87 |
|
fnconstg |
⊢ ( 0 ∈ ℕ0 → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
88 |
86 87
|
mp1i |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐼 × { 0 } ) Fn 𝐼 ) |
89 |
|
eqfnfv |
⊢ ( ( 𝑋 Fn 𝐼 ∧ ( 𝐼 × { 0 } ) Fn 𝐼 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) ) |
90 |
85 88 89
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ) ) |
91 |
|
c0ex |
⊢ 0 ∈ V |
92 |
91
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) = 0 ) |
93 |
92
|
eqeq2d |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
94 |
93
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = ( ( 𝐼 × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) |
95 |
90 94
|
bitrdi |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
96 |
84 95
|
sylibrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑋 ) = 0 → 𝑋 = ( 𝐼 × { 0 } ) ) ) |
97 |
1
|
psrbag0 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐴 ) |
98 |
97
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐼 × { 0 } ) ∈ 𝐴 ) |
99 |
|
oveq2 |
⊢ ( ℎ = ( 𝐼 × { 0 } ) → ( ℂfld Σg ℎ ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
100 |
|
ovex |
⊢ ( ℂfld Σg ( 𝐼 × { 0 } ) ) ∈ V |
101 |
99 2 100
|
fvmpt |
⊢ ( ( 𝐼 × { 0 } ) ∈ 𝐴 → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
102 |
98 101
|
syl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝐼 × { 0 } ) ) ) |
103 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
104 |
103
|
oveq2i |
⊢ ( ℂfld Σg ( 𝐼 × { 0 } ) ) = ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
105 |
16 61
|
ax-mp |
⊢ ℂfld ∈ Mnd |
106 |
14
|
gsumz |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
107 |
105 106
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
108 |
107
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ℂfld Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
109 |
104 108
|
syl5eq |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ℂfld Σg ( 𝐼 × { 0 } ) ) = 0 ) |
110 |
102 109
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 ) |
111 |
|
fveqeq2 |
⊢ ( 𝑋 = ( 𝐼 × { 0 } ) → ( ( 𝐻 ‘ 𝑋 ) = 0 ↔ ( 𝐻 ‘ ( 𝐼 × { 0 } ) ) = 0 ) ) |
112 |
110 111
|
syl5ibrcom |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = ( 𝐼 × { 0 } ) → ( 𝐻 ‘ 𝑋 ) = 0 ) ) |
113 |
96 112
|
impbid |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑋 ) = 0 ↔ 𝑋 = ( 𝐼 × { 0 } ) ) ) |