Step |
Hyp |
Ref |
Expression |
1 |
|
telfsum.1 |
⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) |
2 |
|
telfsum.2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) |
3 |
|
telfsum.3 |
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) |
4 |
|
telfsum.4 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐸 ) |
5 |
|
telfsum.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
|
telfsum.6 |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
|
telfsum.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
8 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
10 |
9
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐵 − 𝐶 ) = Σ 𝑗 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) ( 𝐵 − 𝐶 ) ) |
11 |
1 2 3 4 6 7
|
telfsumo |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐵 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |