Step |
Hyp |
Ref |
Expression |
1 |
|
telgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
telgsum.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
3 |
|
telgsum.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
telgsum.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
telgsum.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐵 ) |
6 |
|
telgsum.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
7 |
|
telgsum.u |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐴 = 0 ) ) |
8 |
|
telgsum.c |
⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐶 ) |
9 |
|
telgsum.d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐷 ) |
10 |
|
telgsum.e |
⊢ ( 𝑘 = 0 → 𝐴 = 𝐸 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
12 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐶 ) |
13 |
11 12
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐴 = 𝐶 ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐶 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
15 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
17 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐷 ) |
18 |
16 17
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐷 ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐷 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) |
20 |
14 19
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐶 − 𝐷 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
21 |
20
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) ) |
23 |
1 2 3 4 5 6 7
|
telgsums |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐴 ) |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
26 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐴 = 𝐸 ) |
27 |
25 26
|
csbied |
⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐴 = 𝐸 ) |
28 |
22 23 27
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 − 𝐷 ) ) ) = 𝐸 ) |