Metamath Proof Explorer


Theorem telgsum

Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019)

Ref Expression
Hypotheses telgsum.b 𝐵 = ( Base ‘ 𝐺 )
telgsum.g ( 𝜑𝐺 ∈ Abel )
telgsum.m = ( -g𝐺 )
telgsum.0 0 = ( 0g𝐺 )
telgsum.f ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴𝐵 )
telgsum.s ( 𝜑𝑆 ∈ ℕ0 )
telgsum.u ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘𝐴 = 0 ) )
telgsum.c ( 𝑘 = 𝑖𝐴 = 𝐶 )
telgsum.d ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐷 )
telgsum.e ( 𝑘 = 0 → 𝐴 = 𝐸 )
Assertion telgsum ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 𝐷 ) ) ) = 𝐸 )

Proof

Step Hyp Ref Expression
1 telgsum.b 𝐵 = ( Base ‘ 𝐺 )
2 telgsum.g ( 𝜑𝐺 ∈ Abel )
3 telgsum.m = ( -g𝐺 )
4 telgsum.0 0 = ( 0g𝐺 )
5 telgsum.f ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴𝐵 )
6 telgsum.s ( 𝜑𝑆 ∈ ℕ0 )
7 telgsum.u ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘𝐴 = 0 ) )
8 telgsum.c ( 𝑘 = 𝑖𝐴 = 𝐶 )
9 telgsum.d ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐷 )
10 telgsum.e ( 𝑘 = 0 → 𝐴 = 𝐸 )
11 simpr ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 )
12 8 adantl ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐶 )
13 11 12 csbied ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝑖 / 𝑘 𝐴 = 𝐶 )
14 13 eqcomd ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝐶 = 𝑖 / 𝑘 𝐴 )
15 peano2nn0 ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 )
16 15 adantl ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℕ0 )
17 9 adantl ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐷 )
18 16 17 csbied ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) / 𝑘 𝐴 = 𝐷 )
19 18 eqcomd ( ( 𝜑𝑖 ∈ ℕ0 ) → 𝐷 = ( 𝑖 + 1 ) / 𝑘 𝐴 )
20 14 19 oveq12d ( ( 𝜑𝑖 ∈ ℕ0 ) → ( 𝐶 𝐷 ) = ( 𝑖 / 𝑘 𝐴 ( 𝑖 + 1 ) / 𝑘 𝐴 ) )
21 20 mpteq2dva ( 𝜑 → ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 𝐷 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 / 𝑘 𝐴 ( 𝑖 + 1 ) / 𝑘 𝐴 ) ) )
22 21 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 / 𝑘 𝐴 ( 𝑖 + 1 ) / 𝑘 𝐴 ) ) ) )
23 1 2 3 4 5 6 7 telgsums ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 / 𝑘 𝐴 ( 𝑖 + 1 ) / 𝑘 𝐴 ) ) ) = 0 / 𝑘 𝐴 )
24 c0ex 0 ∈ V
25 24 a1i ( 𝜑 → 0 ∈ V )
26 10 adantl ( ( 𝜑𝑘 = 0 ) → 𝐴 = 𝐸 )
27 25 26 csbied ( 𝜑 0 / 𝑘 𝐴 = 𝐸 )
28 22 23 27 3eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( 𝐶 𝐷 ) ) ) = 𝐸 )