Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sums over (ranges of) integers
telgsumfz0s
Metamath Proof Explorer
Description: Telescoping finite group sum ranging over nonnegative integers, using
explicit substitution. (Contributed by AV , 24-Oct-2019) (Proof
shortened by AV , 25-Nov-2019)
Ref
Expression
Hypotheses
telgsumfz0s.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
telgsumfz0s.g
⊢ ( 𝜑 → 𝐺 ∈ Abel )
telgsumfz0s.m
⊢ − = ( -g ‘ 𝐺 )
telgsumfz0s.s
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 )
telgsumfz0s.f
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 )
Assertion
telgsumfz0s
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
telgsumfz0s.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
telgsumfz0s.g
⊢ ( 𝜑 → 𝐺 ∈ Abel )
3
telgsumfz0s.m
⊢ − = ( -g ‘ 𝐺 )
4
telgsumfz0s.s
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 )
5
telgsumfz0s.f
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 )
6
nn0uz
⊢ ℕ0 = ( ℤ≥ ‘ 0 )
7
4 6
eleqtrdi
⊢ ( 𝜑 → 𝑆 ∈ ( ℤ≥ ‘ 0 ) )
8
1 2 3 7 5
telgsumfzs
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) )