Step |
Hyp |
Ref |
Expression |
1 |
|
telgsums.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
telgsums.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
3 |
|
telgsums.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
telgsums.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
telgsums.f |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
6 |
|
telgsums.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
7 |
|
telgsums.u |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
8 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
10 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐺 ∈ Grp ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
15 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
17 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
18 |
|
rspcsbela |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
19 |
17 5 18
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
20 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ∧ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
21 |
12 16 19 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ∈ 𝐵 ) |
23 |
|
rspsbca |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
24 |
|
sbcimg |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ) ) |
25 |
|
sbcbr2g |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ) ) |
26 |
|
csbvarg |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ 𝑘 = 𝑖 ) |
27 |
26
|
breq2d |
⊢ ( 𝑖 ∈ V → ( 𝑆 < ⦋ 𝑖 / 𝑘 ⦌ 𝑘 ↔ 𝑆 < 𝑖 ) ) |
28 |
25 27
|
bitrd |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < 𝑖 ) ) |
29 |
|
sbceq1g |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] 𝐶 = 0 ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
30 |
28 29
|
imbi12d |
⊢ ( 𝑖 ∈ V → ( ( [ 𝑖 / 𝑘 ] 𝑆 < 𝑘 → [ 𝑖 / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
31 |
24 30
|
bitrd |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
32 |
31
|
elv |
⊢ ( [ 𝑖 / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
33 |
23 32
|
sylib |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) |
34 |
33
|
expcom |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
35 |
7 34
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ℕ0 → ( 𝑆 < 𝑖 → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
36 |
35
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 = 0 ) |
37 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ∈ ℝ ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 ∈ ℝ ) |
40 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 ∈ ℝ ) |
42 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
43 |
42
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 𝑖 + 1 ) ∈ ℝ ) |
44 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < 𝑖 ) |
45 |
41
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑖 < ( 𝑖 + 1 ) ) |
46 |
39 41 43 44 45
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝑆 < ( 𝑖 + 1 ) ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → 𝑆 < ( 𝑖 + 1 ) ) ) |
48 |
|
rspsbca |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
49 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
50 |
|
sbcimg |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) |
51 |
|
sbcbr2g |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ) ) |
52 |
|
csbvarg |
⊢ ( ( 𝑖 + 1 ) ∈ V → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑖 + 1 ) ) |
53 |
52
|
breq2d |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
54 |
51 53
|
bitrd |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑖 + 1 ) ) ) |
55 |
|
sbceq1g |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
56 |
54 55
|
imbi12d |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( ( [ ( 𝑖 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑖 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
57 |
50 56
|
bitrd |
⊢ ( ( 𝑖 + 1 ) ∈ V → ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
58 |
49 57
|
ax-mp |
⊢ ( [ ( 𝑖 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
59 |
48 58
|
sylib |
⊢ ( ( ( 𝑖 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
60 |
17 7 59
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
61 |
47 60
|
syld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
62 |
61
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
63 |
36 62
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( 0 − 0 ) ) |
64 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → 𝐺 ∈ Grp ) |
65 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
66 |
1 4 3
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ 𝐵 ) → ( 0 − 0 ) = 0 ) |
67 |
64 65 66
|
syl2anc2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( 0 − 0 ) = 0 ) |
68 |
63 67
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑆 < 𝑖 ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) |
69 |
68
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
70 |
69
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝑆 < 𝑖 → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) = 0 ) ) |
71 |
1 4 9 22 6 70
|
gsummptnn0fz |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) ) |
72 |
|
fzssuz |
⊢ ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) |
73 |
72
|
a1i |
⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
74 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
75 |
73 74
|
sseqtrrdi |
⊢ ( 𝜑 → ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 ) |
76 |
|
ssralv |
⊢ ( ( 0 ... ( 𝑆 + 1 ) ) ⊆ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) ) |
77 |
75 5 76
|
sylc |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐶 ∈ 𝐵 ) |
78 |
1 2 3 6 77
|
telgsumfz0s |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) ) |
79 |
|
peano2nn0 |
⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
80 |
6 79
|
syl |
⊢ ( 𝜑 → ( 𝑆 + 1 ) ∈ ℕ0 ) |
81 |
37
|
ltp1d |
⊢ ( 𝜑 → 𝑆 < ( 𝑆 + 1 ) ) |
82 |
|
rspsbca |
⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) |
83 |
|
ovex |
⊢ ( 𝑆 + 1 ) ∈ V |
84 |
|
sbcimg |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ) ) |
85 |
|
sbcbr2g |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ) ) |
86 |
|
csbvarg |
⊢ ( ( 𝑆 + 1 ) ∈ V → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 = ( 𝑆 + 1 ) ) |
87 |
86
|
breq2d |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( 𝑆 < ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
88 |
85 87
|
bitrd |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 ↔ 𝑆 < ( 𝑆 + 1 ) ) ) |
89 |
|
sbceq1g |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ↔ ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
90 |
88 89
|
imbi12d |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( ( [ ( 𝑆 + 1 ) / 𝑘 ] 𝑆 < 𝑘 → [ ( 𝑆 + 1 ) / 𝑘 ] 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
91 |
84 90
|
bitrd |
⊢ ( ( 𝑆 + 1 ) ∈ V → ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
92 |
83 91
|
ax-mp |
⊢ ( [ ( 𝑆 + 1 ) / 𝑘 ] ( 𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
93 |
82 92
|
sylib |
⊢ ( ( ( 𝑆 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) |
94 |
93
|
ex |
⊢ ( ( 𝑆 + 1 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → 𝐶 = 0 ) → ( 𝑆 < ( 𝑆 + 1 ) → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) ) ) |
95 |
80 7 81 94
|
syl3c |
⊢ ( 𝜑 → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 = 0 ) |
96 |
95
|
oveq2d |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) ) |
97 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
98 |
97
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
99 |
|
rspcsbela |
⊢ ( ( 0 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
100 |
98 5 99
|
syl2anc |
⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
101 |
1 4 3
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ⦋ 0 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
102 |
11 100 101
|
syl2anc |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − 0 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
103 |
96 102
|
eqtrd |
⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐶 ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |
104 |
71 78 103
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ℕ0 ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐶 ) ) ) = ⦋ 0 / 𝑘 ⦌ 𝐶 ) |