| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termchom.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termchom.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termchom.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
termchom.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 7 |
1 2 3 4 5
|
termchomn0 |
⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |
| 8 |
|
neq0 |
⊢ ( ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ TermCat ) |
| 14 |
13
|
termcthind |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
| 15 |
10 11 12 2 5 14
|
thinchom |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑋 𝐻 𝑌 ) = { 𝑓 } ) |
| 16 |
13 2 10 11 5 12 6
|
termcid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = ( 1 ‘ 𝑋 ) ) |
| 17 |
16
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → { 𝑓 } = { ( 1 ‘ 𝑋 ) } ) |
| 18 |
15 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |
| 19 |
9 18
|
exlimddv |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { ( 1 ‘ 𝑋 ) } ) |