Metamath Proof Explorer
Description: TermO is a function on Cat . (Contributed by Zhi Wang, 29-Aug-2024)
|
|
Ref |
Expression |
|
Assertion |
termofn |
⊢ TermO Fn Cat |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
⊢ ( Base ‘ 𝑐 ) ∈ V |
| 2 |
1
|
rabex |
⊢ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝑐 ) 𝑎 ) } ∈ V |
| 3 |
|
df-termo |
⊢ TermO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑏 ( Hom ‘ 𝑐 ) 𝑎 ) } ) |
| 4 |
2 3
|
fnmpti |
⊢ TermO Fn Cat |