| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | initoval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | initoval.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 |  | df-termo | ⊢ TermO  =  ( 𝑐  ∈  Cat  ↦  { 𝑎  ∈  ( Base ‘ 𝑐 )  ∣  ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 ) } ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 8 | 7 3 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Hom  ‘ 𝑐 )  =  𝐻 ) | 
						
							| 9 | 8 | oveqd | ⊢ ( 𝑐  =  𝐶  →  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 )  =  ( 𝑏 𝐻 𝑎 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑐  =  𝐶  →  ( ℎ  ∈  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 )  ↔  ℎ  ∈  ( 𝑏 𝐻 𝑎 ) ) ) | 
						
							| 11 | 10 | eubidv | ⊢ ( 𝑐  =  𝐶  →  ( ∃! ℎ ℎ  ∈  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 )  ↔  ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) ) ) | 
						
							| 12 | 6 11 | raleqbidv | ⊢ ( 𝑐  =  𝐶  →  ( ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 )  ↔  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) ) ) | 
						
							| 13 | 6 12 | rabeqbidv | ⊢ ( 𝑐  =  𝐶  →  { 𝑎  ∈  ( Base ‘ 𝑐 )  ∣  ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑏 ( Hom  ‘ 𝑐 ) 𝑎 ) }  =  { 𝑎  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) } ) | 
						
							| 14 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 15 | 14 | rabex | ⊢ { 𝑎  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) }  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  { 𝑎  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) }  ∈  V ) | 
						
							| 17 | 4 13 1 16 | fvmptd3 | ⊢ ( 𝜑  →  ( TermO ‘ 𝐶 )  =  { 𝑎  ∈  𝐵  ∣  ∀ 𝑏  ∈  𝐵 ∃! ℎ ℎ  ∈  ( 𝑏 𝐻 𝑎 ) } ) |