Step |
Hyp |
Ref |
Expression |
1 |
|
tfindes.1 |
⊢ [ ∅ / 𝑥 ] 𝜑 |
2 |
|
tfindes.2 |
⊢ ( 𝑥 ∈ On → ( 𝜑 → [ suc 𝑥 / 𝑥 ] 𝜑 ) ) |
3 |
|
tfindes.3 |
⊢ ( Lim 𝑦 → ( ∀ 𝑥 ∈ 𝑦 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
4 |
|
dfsbcq |
⊢ ( 𝑦 = ∅ → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ∅ / 𝑥 ] 𝜑 ) ) |
5 |
|
dfsbcq |
⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
6 |
|
dfsbcq |
⊢ ( 𝑦 = suc 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ suc 𝑧 / 𝑥 ] 𝜑 ) ) |
7 |
|
sbceq2a |
⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ On |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
10 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ suc 𝑧 / 𝑥 ] 𝜑 |
11 |
9 10
|
nfim |
⊢ Ⅎ 𝑥 ( [ 𝑧 / 𝑥 ] 𝜑 → [ suc 𝑧 / 𝑥 ] 𝜑 ) |
12 |
8 11
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ On → ( [ 𝑧 / 𝑥 ] 𝜑 → [ suc 𝑧 / 𝑥 ] 𝜑 ) ) |
13 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ On ↔ 𝑧 ∈ On ) ) |
14 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
15 |
|
suceq |
⊢ ( 𝑥 = 𝑧 → suc 𝑥 = suc 𝑧 ) |
16 |
15
|
sbceq1d |
⊢ ( 𝑥 = 𝑧 → ( [ suc 𝑥 / 𝑥 ] 𝜑 ↔ [ suc 𝑧 / 𝑥 ] 𝜑 ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 → [ suc 𝑥 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 → [ suc 𝑧 / 𝑥 ] 𝜑 ) ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ On → ( 𝜑 → [ suc 𝑥 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑧 ∈ On → ( [ 𝑧 / 𝑥 ] 𝜑 → [ suc 𝑧 / 𝑥 ] 𝜑 ) ) ) ) |
19 |
12 18 2
|
chvarfv |
⊢ ( 𝑧 ∈ On → ( [ 𝑧 / 𝑥 ] 𝜑 → [ suc 𝑧 / 𝑥 ] 𝜑 ) ) |
20 |
|
cbvralsvw |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
21 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
22 |
21
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
23 |
20 22
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
24 |
23 3
|
syl5bir |
⊢ ( Lim 𝑦 → ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
25 |
4 5 6 7 1 19 24
|
tfinds |
⊢ ( 𝑥 ∈ On → 𝜑 ) |