Step |
Hyp |
Ref |
Expression |
1 |
|
tfinds.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfinds.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfinds.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
tfinds.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
tfinds.5 |
⊢ 𝜓 |
6 |
|
tfinds.6 |
⊢ ( 𝑦 ∈ On → ( 𝜒 → 𝜃 ) ) |
7 |
|
tfinds.7 |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) |
8 |
|
dflim3 |
⊢ ( Lim 𝑥 ↔ ( Ord 𝑥 ∧ ¬ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ) |
9 |
8
|
notbii |
⊢ ( ¬ Lim 𝑥 ↔ ¬ ( Ord 𝑥 ∧ ¬ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ) |
10 |
|
iman |
⊢ ( ( Ord 𝑥 → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ↔ ¬ ( Ord 𝑥 ∧ ¬ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ) |
11 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
12 |
|
pm2.27 |
⊢ ( Ord 𝑥 → ( ( Ord 𝑥 → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑥 ∈ On → ( ( Ord 𝑥 → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) ) |
14 |
5 1
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝜑 ) |
15 |
14
|
a1d |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) |
16 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑥 𝜒 |
17 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
18 |
16 17
|
nfim |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
21 |
2
|
rspcv |
⊢ ( 𝑦 ∈ suc 𝑦 → ( ∀ 𝑥 ∈ suc 𝑦 𝜑 → 𝜒 ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ suc 𝑦 𝜑 → 𝜒 ) |
23 |
22 6
|
syl5 |
⊢ ( 𝑦 ∈ On → ( ∀ 𝑥 ∈ suc 𝑦 𝜑 → 𝜃 ) ) |
24 |
|
raleq |
⊢ ( 𝑥 = suc 𝑦 → ( ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∈ suc 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
25 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
26 |
25 2
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
27 |
|
sbequ |
⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
28 |
26 27
|
bitr3id |
⊢ ( 𝑦 = 𝑧 → ( 𝜒 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 ) |
30 |
|
cbvralsvw |
⊢ ( ∀ 𝑥 ∈ suc 𝑦 𝜑 ↔ ∀ 𝑧 ∈ suc 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
31 |
24 29 30
|
3bitr4g |
⊢ ( 𝑥 = suc 𝑦 → ( ∀ 𝑦 ∈ 𝑥 𝜒 ↔ ∀ 𝑥 ∈ suc 𝑦 𝜑 ) ) |
32 |
31
|
imbi1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜃 ) ↔ ( ∀ 𝑥 ∈ suc 𝑦 𝜑 → 𝜃 ) ) ) |
33 |
23 32
|
syl5ibrcom |
⊢ ( 𝑦 ∈ On → ( 𝑥 = suc 𝑦 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜃 ) ) ) |
34 |
3
|
biimprd |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜃 → 𝜑 ) ) |
35 |
34
|
a1i |
⊢ ( 𝑦 ∈ On → ( 𝑥 = suc 𝑦 → ( 𝜃 → 𝜑 ) ) ) |
36 |
33 35
|
syldd |
⊢ ( 𝑦 ∈ On → ( 𝑥 = suc 𝑦 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
37 |
18 36
|
rexlimi |
⊢ ( ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) |
38 |
15 37
|
jaoi |
⊢ ( ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) |
39 |
13 38
|
syl6 |
⊢ ( 𝑥 ∈ On → ( ( Ord 𝑥 → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
40 |
10 39
|
syl5bir |
⊢ ( 𝑥 ∈ On → ( ¬ ( Ord 𝑥 ∧ ¬ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
41 |
9 40
|
syl5bi |
⊢ ( 𝑥 ∈ On → ( ¬ Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
42 |
41 7
|
pm2.61d2 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) |
43 |
2 4 42
|
tfis3 |
⊢ ( 𝐴 ∈ On → 𝜏 ) |