Step |
Hyp |
Ref |
Expression |
1 |
|
tfinds2.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfinds2.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfinds2.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
tfinds2.4 |
⊢ ( 𝜏 → 𝜓 ) |
5 |
|
tfinds2.5 |
⊢ ( 𝑦 ∈ On → ( 𝜏 → ( 𝜒 → 𝜃 ) ) ) |
6 |
|
tfinds2.6 |
⊢ ( Lim 𝑥 → ( 𝜏 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
1
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) ) |
9 |
7 8
|
sbcie |
⊢ ( [ ∅ / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) |
10 |
4 9
|
mpbir |
⊢ [ ∅ / 𝑥 ] ( 𝜏 → 𝜑 ) |
11 |
5
|
a2d |
⊢ ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
12 |
11
|
sbcth |
⊢ ( 𝑥 ∈ V → [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) |
13 |
12
|
elv |
⊢ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
14 |
|
sbcimg |
⊢ ( 𝑥 ∈ V → ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ↔ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) ) |
15 |
14
|
elv |
⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ↔ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) |
16 |
13 15
|
mpbi |
⊢ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
17 |
|
sbcel1v |
⊢ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On ↔ 𝑥 ∈ On ) |
18 |
|
sbcimg |
⊢ ( 𝑥 ∈ V → ( [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ↔ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) ) |
19 |
18
|
elv |
⊢ ( [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ↔ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) |
20 |
16 17 19
|
3imtr3i |
⊢ ( 𝑥 ∈ On → ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) |
21 |
|
vex |
⊢ 𝑥 ∈ V |
22 |
2
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) |
23 |
22
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜒 ↔ 𝜑 ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → 𝜑 ) ) ) |
25 |
21 24
|
sbcie |
⊢ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → 𝜑 ) ) |
26 |
|
vex |
⊢ 𝑦 ∈ V |
27 |
26
|
sucex |
⊢ suc 𝑦 ∈ V |
28 |
3
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜃 ) ) ) |
29 |
27 28
|
sbcie |
⊢ ( [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜃 ) ) |
30 |
29
|
sbcbii |
⊢ ( [ 𝑥 / 𝑦 ] [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) |
31 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
32 |
31
|
sbcco2 |
⊢ ( [ 𝑥 / 𝑦 ] [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) |
33 |
30 32
|
bitr3i |
⊢ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ↔ [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) |
34 |
20 25 33
|
3imtr3g |
⊢ ( 𝑥 ∈ On → ( ( 𝜏 → 𝜑 ) → [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
35 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜒 ) ) ) |
36 |
35
|
sbralie |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ) |
37 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ) |
38 |
36 37
|
bitr2i |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) ) |
39 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) |
40 |
6
|
a2d |
⊢ ( Lim 𝑥 → ( ( 𝜏 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
41 |
39 40
|
syl5bi |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
42 |
41
|
sbcth |
⊢ ( 𝑦 ∈ V → [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) |
43 |
42
|
elv |
⊢ [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
44 |
|
sbcimg |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ↔ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) ) |
45 |
44
|
elv |
⊢ ( [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ↔ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) |
46 |
43 45
|
mpbi |
⊢ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
47 |
|
limeq |
⊢ ( 𝑥 = 𝑦 → ( Lim 𝑥 ↔ Lim 𝑦 ) ) |
48 |
26 47
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] Lim 𝑥 ↔ Lim 𝑦 ) |
49 |
|
sbcimg |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) ) |
50 |
49
|
elv |
⊢ ( [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
51 |
46 48 50
|
3imtr3i |
⊢ ( Lim 𝑦 → ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
52 |
38 51
|
syl5bir |
⊢ ( Lim 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
53 |
10 34 52
|
tfindes |
⊢ ( 𝑥 ∈ On → ( 𝜏 → 𝜑 ) ) |