| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfinds3.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
tfinds3.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
tfinds3.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
tfinds3.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
tfinds3.5 |
⊢ ( 𝜂 → 𝜓 ) |
| 6 |
|
tfinds3.6 |
⊢ ( 𝑦 ∈ On → ( 𝜂 → ( 𝜒 → 𝜃 ) ) ) |
| 7 |
|
tfinds3.7 |
⊢ ( Lim 𝑥 → ( 𝜂 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
| 8 |
1
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜓 ) ) ) |
| 9 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜒 ) ) ) |
| 10 |
3
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜃 ) ) ) |
| 11 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜏 ) ) ) |
| 12 |
6
|
a2d |
⊢ ( 𝑦 ∈ On → ( ( 𝜂 → 𝜒 ) → ( 𝜂 → 𝜃 ) ) ) |
| 13 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜂 → 𝜒 ) ↔ ( 𝜂 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) |
| 14 |
7
|
a2d |
⊢ ( Lim 𝑥 → ( ( 𝜂 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜂 → 𝜑 ) ) ) |
| 15 |
13 14
|
biimtrid |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜂 → 𝜒 ) → ( 𝜂 → 𝜑 ) ) ) |
| 16 |
8 9 10 11 5 12 15
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝜂 → 𝜏 ) ) |