Step |
Hyp |
Ref |
Expression |
1 |
|
tfinds3.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfinds3.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfinds3.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
tfinds3.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
tfinds3.5 |
⊢ ( 𝜂 → 𝜓 ) |
6 |
|
tfinds3.6 |
⊢ ( 𝑦 ∈ On → ( 𝜂 → ( 𝜒 → 𝜃 ) ) ) |
7 |
|
tfinds3.7 |
⊢ ( Lim 𝑥 → ( 𝜂 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) |
8 |
1
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜓 ) ) ) |
9 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜒 ) ) ) |
10 |
3
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜃 ) ) ) |
11 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜂 → 𝜑 ) ↔ ( 𝜂 → 𝜏 ) ) ) |
12 |
6
|
a2d |
⊢ ( 𝑦 ∈ On → ( ( 𝜂 → 𝜒 ) → ( 𝜂 → 𝜃 ) ) ) |
13 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜂 → 𝜒 ) ↔ ( 𝜂 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) |
14 |
7
|
a2d |
⊢ ( Lim 𝑥 → ( ( 𝜂 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜂 → 𝜑 ) ) ) |
15 |
13 14
|
syl5bi |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜂 → 𝜒 ) → ( 𝜂 → 𝜑 ) ) ) |
16 |
8 9 10 11 5 12 15
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝜂 → 𝜏 ) ) |