Step |
Hyp |
Ref |
Expression |
1 |
|
tfindsg.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfindsg.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfindsg.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
tfindsg.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
tfindsg.5 |
⊢ ( 𝐵 ∈ On → 𝜓 ) |
6 |
|
tfindsg.6 |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
7 |
|
tfindsg.7 |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) |
8 |
|
sseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
10 |
|
eqeq2 |
⊢ ( 𝐵 = ∅ → ( 𝑥 = 𝐵 ↔ 𝑥 = ∅ ) ) |
11 |
10 1
|
syl6bir |
⊢ ( 𝐵 = ∅ → ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝜑 ↔ 𝜓 ) ) |
13 |
9 12
|
imbi12d |
⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
14 |
8
|
imbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜑 ) ) ) |
15 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
16 |
15
|
con3i |
⊢ ( ¬ 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅ ) |
17 |
16
|
pm2.21d |
⊢ ( ¬ 𝐵 = ∅ → ( 𝐵 ⊆ ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
18 |
17
|
pm5.74d |
⊢ ( ¬ 𝐵 = ∅ → ( ( 𝐵 ⊆ ∅ → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
19 |
14 18
|
sylan9bbr |
⊢ ( ( ¬ 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
20 |
13 19
|
pm2.61ian |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) ) |
22 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) |
23 |
22 2
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) ) |
25 |
|
sseq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ suc 𝑦 ) ) |
26 |
25 3
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
28 |
|
sseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴 ) ) |
29 |
28 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) ) |
31 |
5
|
a1d |
⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ∅ → 𝜓 ) ) |
32 |
|
vex |
⊢ 𝑦 ∈ V |
33 |
32
|
sucex |
⊢ suc 𝑦 ∈ V |
34 |
33
|
eqvinc |
⊢ ( suc 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) ) |
35 |
5 1
|
syl5ibr |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ On → 𝜑 ) ) |
36 |
3
|
biimpd |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 → 𝜃 ) ) |
37 |
35 36
|
sylan9r |
⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
38 |
37
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ On → 𝜃 ) ) |
39 |
34 38
|
sylbi |
⊢ ( suc 𝑦 = 𝐵 → ( 𝐵 ∈ On → 𝜃 ) ) |
40 |
39
|
eqcoms |
⊢ ( 𝐵 = suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) |
41 |
40
|
imim2i |
⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) |
42 |
41
|
a1d |
⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ On → 𝜃 ) ) ) ) |
43 |
42
|
com4r |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
45 |
|
df-ne |
⊢ ( 𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦 ) |
46 |
45
|
anbi2i |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ) |
47 |
|
annim |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
48 |
46 47
|
bitri |
⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
49 |
|
onsssuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ∈ suc 𝑦 ) ) |
50 |
|
suceloni |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
51 |
|
onelpss |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
52 |
50 51
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
53 |
49 52
|
bitrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
54 |
53
|
ancoms |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
55 |
6
|
ex |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
56 |
55
|
a1ddd |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
57 |
56
|
a2d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ 𝑦 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
58 |
57
|
com23 |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝑦 → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
59 |
54 58
|
sylbird |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
60 |
48 59
|
syl5bir |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
61 |
44 60
|
pm2.61d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
62 |
61
|
ex |
⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
63 |
62
|
a2d |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
64 |
|
pm2.27 |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
65 |
64
|
ralimdv |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
66 |
65
|
ad2antlr |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
67 |
66 7
|
syld |
⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) |
68 |
67
|
exp31 |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
69 |
68
|
com3l |
⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → 𝜑 ) ) ) ) |
70 |
69
|
com4t |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ) ) |
71 |
21 24 27 30 31 63 70
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
72 |
71
|
imp31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |