Step |
Hyp |
Ref |
Expression |
1 |
|
tfindsg2.1 |
⊢ ( 𝑥 = suc 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfindsg2.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfindsg2.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
tfindsg2.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
tfindsg2.5 |
⊢ ( 𝐵 ∈ On → 𝜓 ) |
6 |
|
tfindsg2.6 |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
7 |
|
tfindsg2.7 |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) |
8 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |
9 |
|
sucelon |
⊢ ( 𝐵 ∈ On ↔ suc 𝐵 ∈ On ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ On ) |
11 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
12 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ⊆ 𝐴 ) |
15 |
9 5
|
sylbir |
⊢ ( suc 𝐵 ∈ On → 𝜓 ) |
16 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
17 |
|
ordelsuc |
⊢ ( ( 𝐵 ∈ On ∧ Ord 𝑦 ) → ( 𝐵 ∈ 𝑦 ↔ suc 𝐵 ⊆ 𝑦 ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ 𝑦 ↔ suc 𝐵 ⊆ 𝑦 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝑦 ↔ suc 𝐵 ⊆ 𝑦 ) ) |
20 |
6
|
ex |
⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
22 |
19 21
|
sylbird |
⊢ ( ( 𝑦 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
23 |
9 22
|
sylan2br |
⊢ ( ( 𝑦 ∈ On ∧ suc 𝐵 ∈ On ) → ( suc 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝐵 ∈ On ) ∧ suc 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
25 |
7
|
ex |
⊢ ( Lim 𝑥 → ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) ) |
27 |
|
vex |
⊢ 𝑥 ∈ V |
28 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
29 |
27 28
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
30 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
31 |
|
ordelsuc |
⊢ ( ( 𝐵 ∈ On ∧ Ord 𝑥 ) → ( 𝐵 ∈ 𝑥 ↔ suc 𝐵 ⊆ 𝑥 ) ) |
32 |
30 31
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 ∈ 𝑥 ↔ suc 𝐵 ⊆ 𝑥 ) ) |
33 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
34 |
33 16
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
35 |
34 17
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 ∈ 𝑦 ↔ suc 𝐵 ⊆ 𝑦 ) ) |
36 |
35
|
anassrs |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 ∈ 𝑦 ↔ suc 𝐵 ⊆ 𝑦 ) ) |
37 |
36
|
imbi1d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐵 ∈ 𝑦 → 𝜒 ) ↔ ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
38 |
37
|
ralbidva |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) ↔ ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
39 |
38
|
imbi1d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) |
40 |
32 39
|
imbi12d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) ↔ ( suc 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) ) |
41 |
29 40
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) ↔ ( suc 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) ) |
42 |
41
|
ancoms |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( ( 𝐵 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐵 ∈ 𝑦 → 𝜒 ) → 𝜑 ) ) ↔ ( suc 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) ) |
43 |
26 42
|
mpbid |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( suc 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) |
44 |
9 43
|
sylan2br |
⊢ ( ( Lim 𝑥 ∧ suc 𝐵 ∈ On ) → ( suc 𝐵 ⊆ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) ) |
45 |
44
|
imp |
⊢ ( ( ( Lim 𝑥 ∧ suc 𝐵 ∈ On ) ∧ suc 𝐵 ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( suc 𝐵 ⊆ 𝑦 → 𝜒 ) → 𝜑 ) ) |
46 |
1 2 3 4 15 24 45
|
tfindsg |
⊢ ( ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) ∧ suc 𝐵 ⊆ 𝐴 ) → 𝜏 ) |
47 |
46
|
expl |
⊢ ( 𝐴 ∈ On → ( ( suc 𝐵 ∈ On ∧ suc 𝐵 ⊆ 𝐴 ) → 𝜏 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → ( ( suc 𝐵 ∈ On ∧ suc 𝐵 ⊆ 𝐴 ) → 𝜏 ) ) |
49 |
10 14 48
|
mp2and |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → 𝜏 ) |