| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfindsg2.1 | ⊢ ( 𝑥  =  suc  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | tfindsg2.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | tfindsg2.3 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | tfindsg2.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | tfindsg2.5 | ⊢ ( 𝐵  ∈  On  →  𝜓 ) | 
						
							| 6 |  | tfindsg2.6 | ⊢ ( ( 𝑦  ∈  On  ∧  𝐵  ∈  𝑦 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | tfindsg2.7 | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) ) | 
						
							| 8 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  On ) | 
						
							| 9 |  | onsucb | ⊢ ( 𝐵  ∈  On  ↔  suc  𝐵  ∈  On ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  𝐴 )  →  suc  𝐵  ∈  On ) | 
						
							| 11 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 12 |  | ordsucss | ⊢ ( Ord  𝐴  →  ( 𝐵  ∈  𝐴  →  suc  𝐵  ⊆  𝐴 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  ∈  𝐴  →  suc  𝐵  ⊆  𝐴 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  𝐴 )  →  suc  𝐵  ⊆  𝐴 ) | 
						
							| 15 | 9 5 | sylbir | ⊢ ( suc  𝐵  ∈  On  →  𝜓 ) | 
						
							| 16 |  | eloni | ⊢ ( 𝑦  ∈  On  →  Ord  𝑦 ) | 
						
							| 17 |  | ordelsuc | ⊢ ( ( 𝐵  ∈  On  ∧  Ord  𝑦 )  →  ( 𝐵  ∈  𝑦  ↔  suc  𝐵  ⊆  𝑦 ) ) | 
						
							| 18 | 16 17 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐵  ∈  𝑦  ↔  suc  𝐵  ⊆  𝑦 ) ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝑦  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ∈  𝑦  ↔  suc  𝐵  ⊆  𝑦 ) ) | 
						
							| 20 | 6 | ex | ⊢ ( 𝑦  ∈  On  →  ( 𝐵  ∈  𝑦  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑦  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ∈  𝑦  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 22 | 19 21 | sylbird | ⊢ ( ( 𝑦  ∈  On  ∧  𝐵  ∈  On )  →  ( suc  𝐵  ⊆  𝑦  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 23 | 9 22 | sylan2br | ⊢ ( ( 𝑦  ∈  On  ∧  suc  𝐵  ∈  On )  →  ( suc  𝐵  ⊆  𝑦  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝑦  ∈  On  ∧  suc  𝐵  ∈  On )  ∧  suc  𝐵  ⊆  𝑦 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 25 | 7 | ex | ⊢ ( Lim  𝑥  →  ( 𝐵  ∈  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( 𝐵  ∈  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) ) ) | 
						
							| 27 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 28 |  | limelon | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  𝑥  ∈  On ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( Lim  𝑥  →  𝑥  ∈  On ) | 
						
							| 30 |  | eloni | ⊢ ( 𝑥  ∈  On  →  Ord  𝑥 ) | 
						
							| 31 |  | ordelsuc | ⊢ ( ( 𝐵  ∈  On  ∧  Ord  𝑥 )  →  ( 𝐵  ∈  𝑥  ↔  suc  𝐵  ⊆  𝑥 ) ) | 
						
							| 32 | 30 31 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐵  ∈  𝑥  ↔  suc  𝐵  ⊆  𝑥 ) ) | 
						
							| 33 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 34 | 33 16 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  Ord  𝑦 ) | 
						
							| 35 | 34 17 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 ) )  →  ( 𝐵  ∈  𝑦  ↔  suc  𝐵  ⊆  𝑦 ) ) | 
						
							| 36 | 35 | anassrs | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐵  ∈  𝑦  ↔  suc  𝐵  ⊆  𝑦 ) ) | 
						
							| 37 | 36 | imbi1d | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝐵  ∈  𝑦  →  𝜒 )  ↔  ( suc  𝐵  ⊆  𝑦  →  𝜒 ) ) ) | 
						
							| 38 | 37 | ralbidva | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  ↔  ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 ) ) ) | 
						
							| 39 | 38 | imbi1d | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 )  ↔  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) | 
						
							| 40 | 32 39 | imbi12d | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ( 𝐵  ∈  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) )  ↔  ( suc  𝐵  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 41 | 29 40 | sylan2 | ⊢ ( ( 𝐵  ∈  On  ∧  Lim  𝑥 )  →  ( ( 𝐵  ∈  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) )  ↔  ( suc  𝐵  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 42 | 41 | ancoms | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( ( 𝐵  ∈  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐵  ∈  𝑦  →  𝜒 )  →  𝜑 ) )  ↔  ( suc  𝐵  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 43 | 26 42 | mpbid | ⊢ ( ( Lim  𝑥  ∧  𝐵  ∈  On )  →  ( suc  𝐵  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) | 
						
							| 44 | 9 43 | sylan2br | ⊢ ( ( Lim  𝑥  ∧  suc  𝐵  ∈  On )  →  ( suc  𝐵  ⊆  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( Lim  𝑥  ∧  suc  𝐵  ∈  On )  ∧  suc  𝐵  ⊆  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( suc  𝐵  ⊆  𝑦  →  𝜒 )  →  𝜑 ) ) | 
						
							| 46 | 1 2 3 4 15 24 45 | tfindsg | ⊢ ( ( ( 𝐴  ∈  On  ∧  suc  𝐵  ∈  On )  ∧  suc  𝐵  ⊆  𝐴 )  →  𝜏 ) | 
						
							| 47 | 46 | expl | ⊢ ( 𝐴  ∈  On  →  ( ( suc  𝐵  ∈  On  ∧  suc  𝐵  ⊆  𝐴 )  →  𝜏 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  𝐴 )  →  ( ( suc  𝐵  ∈  On  ∧  suc  𝐵  ⊆  𝐴 )  →  𝜏 ) ) | 
						
							| 49 | 10 14 48 | mp2and | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  𝐴 )  →  𝜏 ) |