| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfis.1 | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 ) ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑥  ∈  On  ∣  𝜑 }  ⊆  On | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 4 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  On  ∣  𝜑 } | 
						
							| 5 | 3 4 | nfss | ⊢ Ⅎ 𝑥 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 } | 
						
							| 6 | 4 | nfcri | ⊢ Ⅎ 𝑥 𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } | 
						
							| 7 | 5 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) | 
						
							| 8 |  | dfss3 | ⊢ ( 𝑥  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) | 
						
							| 9 |  | sseq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  ↔  𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 10 | 8 9 | bitr3id | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 11 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ( 𝑥  ∈  On  ∧  𝜑 ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 13 | 11 12 | bitr3id | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  On  ∧  𝜑 )  ↔  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 14 | 10 13 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  ( 𝑥  ∈  On  ∧  𝜑 ) )  ↔  ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) ) | 
						
							| 15 |  | sbequ | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑥 On | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑤 On | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 19 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝜑 | 
						
							| 20 |  | sbequ12 | ⊢ ( 𝑥  =  𝑤  →  ( 𝜑  ↔  [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 | 16 17 18 19 20 | cbvrabw | ⊢ { 𝑥  ∈  On  ∣  𝜑 }  =  { 𝑤  ∈  On  ∣  [ 𝑤  /  𝑥 ] 𝜑 } | 
						
							| 22 | 15 21 | elrab2 | ⊢ ( 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ( 𝑦  ∈  On  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 23 | 22 | simprbi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 24 | 23 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 25 | 24 1 | syl5 | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  𝜑 ) ) | 
						
							| 26 | 25 | anc2li | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  ( 𝑥  ∈  On  ∧  𝜑 ) ) ) | 
						
							| 27 | 3 7 14 26 | vtoclgaf | ⊢ ( 𝑧  ∈  On  →  ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 28 | 27 | rgen | ⊢ ∀ 𝑧  ∈  On ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) | 
						
							| 29 |  | tfi | ⊢ ( ( { 𝑥  ∈  On  ∣  𝜑 }  ⊆  On  ∧  ∀ 𝑧  ∈  On ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) )  →  { 𝑥  ∈  On  ∣  𝜑 }  =  On ) | 
						
							| 30 | 2 28 29 | mp2an | ⊢ { 𝑥  ∈  On  ∣  𝜑 }  =  On | 
						
							| 31 | 30 | eqcomi | ⊢ On  =  { 𝑥  ∈  On  ∣  𝜑 } | 
						
							| 32 | 31 | reqabi | ⊢ ( 𝑥  ∈  On  ↔  ( 𝑥  ∈  On  ∧  𝜑 ) ) | 
						
							| 33 | 32 | simprbi | ⊢ ( 𝑥  ∈  On  →  𝜑 ) |