Metamath Proof Explorer
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)
|
|
Ref |
Expression |
|
Hypotheses |
tfis2f.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
tfis2f.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
tfis2f.3 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
|
Assertion |
tfis2f |
⊢ ( 𝑥 ∈ On → 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tfis2f.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
tfis2f.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
tfis2f.3 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
4 |
1 2
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) |
6 |
5 3
|
syl5bi |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) |
7 |
6
|
tfis |
⊢ ( 𝑥 ∈ On → 𝜑 ) |