Metamath Proof Explorer


Theorem tfis2f

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses tfis2f.1 𝑥 𝜓
tfis2f.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
tfis2f.3 ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 𝜓𝜑 ) )
Assertion tfis2f ( 𝑥 ∈ On → 𝜑 )

Proof

Step Hyp Ref Expression
1 tfis2f.1 𝑥 𝜓
2 tfis2f.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 tfis2f.3 ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 𝜓𝜑 ) )
4 1 2 sbiev ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
5 4 ralbii ( ∀ 𝑦𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦𝑥 𝜓 )
6 5 3 syl5bi ( 𝑥 ∈ On → ( ∀ 𝑦𝑥 [ 𝑦 / 𝑥 ] 𝜑𝜑 ) )
7 6 tfis ( 𝑥 ∈ On → 𝜑 )