Metamath Proof Explorer
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003)
|
|
Ref |
Expression |
|
Hypotheses |
tfis3.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
tfis3.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
tfis3.3 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
|
Assertion |
tfis3 |
⊢ ( 𝐴 ∈ On → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tfis3.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
tfis3.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
tfis3.3 |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
4 |
1 3
|
tfis2 |
⊢ ( 𝑥 ∈ On → 𝜑 ) |
5 |
2 4
|
vtoclga |
⊢ ( 𝐴 ∈ On → 𝜒 ) |