| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑥  ∈  On  ∣  𝜑 }  ⊆  On | 
						
							| 2 |  | dfss3 | ⊢ ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝑧 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥 On | 
						
							| 4 | 3 | elrabsf | ⊢ ( 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ( 𝑦  ∈  On  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 5 | 4 | simprbi | ⊢ ( 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 6 | 5 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑧 𝑦  ∈  { 𝑥  ∈  On  ∣  𝜑 }  →  ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 7 | 2 6 | sylbi | ⊢ ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 9 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 10 | 8 9 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 | 
						
							| 11 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 12 | 10 11 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 13 |  | raleq | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 |  | sbceq1a | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 15 | 13 14 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ↔  ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 16 | 12 15 | rspc | ⊢ ( 𝑧  ∈  On  →  ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  →  ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ∧  𝑧  ∈  On )  →  ( ∀ 𝑦  ∈  𝑧 [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 18 | 7 17 | syl5 | ⊢ ( ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ∧  𝑧  ∈  On )  →  ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ∧  𝑧  ∈  On )  →  𝑧  ∈  On ) | 
						
							| 20 | 18 19 | jctild | ⊢ ( ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ∧  𝑧  ∈  On )  →  ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  ( 𝑧  ∈  On  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 21 | 3 | elrabsf | ⊢ ( 𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ( 𝑧  ∈  On  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 22 | 20 21 | imbitrrdi | ⊢ ( ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  ∧  𝑧  ∈  On )  →  ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 23 | 22 | ralrimiva | ⊢ ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  →  ∀ 𝑧  ∈  On ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) ) | 
						
							| 24 |  | tfi | ⊢ ( ( { 𝑥  ∈  On  ∣  𝜑 }  ⊆  On  ∧  ∀ 𝑧  ∈  On ( 𝑧  ⊆  { 𝑥  ∈  On  ∣  𝜑 }  →  𝑧  ∈  { 𝑥  ∈  On  ∣  𝜑 } ) )  →  { 𝑥  ∈  On  ∣  𝜑 }  =  On ) | 
						
							| 25 | 1 23 24 | sylancr | ⊢ ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  →  { 𝑥  ∈  On  ∣  𝜑 }  =  On ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  →  On  =  { 𝑥  ∈  On  ∣  𝜑 } ) | 
						
							| 27 |  | rabid2 | ⊢ ( On  =  { 𝑥  ∈  On  ∣  𝜑 }  ↔  ∀ 𝑥  ∈  On 𝜑 ) | 
						
							| 28 | 26 27 | sylib | ⊢ ( ∀ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 [ 𝑦  /  𝑥 ] 𝜑  →  𝜑 )  →  ∀ 𝑥  ∈  On 𝜑 ) |