| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfisi.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
tfisi.b |
⊢ ( 𝜑 → 𝑇 ∈ On ) |
| 3 |
|
tfisi.c |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇 ) ∧ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) → 𝜓 ) |
| 4 |
|
tfisi.d |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
| 5 |
|
tfisi.e |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
| 6 |
|
tfisi.f |
⊢ ( 𝑥 = 𝑦 → 𝑅 = 𝑆 ) |
| 7 |
|
tfisi.g |
⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝑇 ) |
| 8 |
|
ssid |
⊢ 𝑇 ⊆ 𝑇 |
| 9 |
|
eqid |
⊢ 𝑇 = 𝑇 |
| 10 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑤 ) ) |
| 11 |
|
sseq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ⊆ 𝑇 ↔ 𝑤 ⊆ 𝑇 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 14 |
10 13
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 15 |
14
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 16 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 = 𝑤 ↔ 𝑆 = 𝑤 ) ) |
| 17 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 18 |
16 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 19 |
18
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑅 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 20 |
15 19
|
bitrdi |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 21 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑇 → ( 𝑅 = 𝑧 ↔ 𝑅 = 𝑇 ) ) |
| 22 |
|
sseq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ⊆ 𝑇 ↔ 𝑇 ⊆ 𝑇 ) ) |
| 23 |
22
|
anbi2d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) ) ) |
| 24 |
23
|
imbi1d |
⊢ ( 𝑧 = 𝑇 → ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 25 |
21 24
|
imbi12d |
⊢ ( 𝑧 = 𝑇 → ( ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 26 |
25
|
albidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 27 |
|
simp3l |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜑 ) |
| 28 |
|
simp2 |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 = 𝑧 ) |
| 29 |
|
simp1l |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ∈ On ) |
| 30 |
28 29
|
eqeltrd |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ∈ On ) |
| 31 |
|
simp3r |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑧 ⊆ 𝑇 ) |
| 32 |
28 31
|
eqsstrd |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝑅 ⊆ 𝑇 ) |
| 33 |
|
simpl3l |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝜑 ) |
| 34 |
|
simpl1l |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ∈ On ) |
| 35 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) |
| 36 |
|
simpl2 |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑅 = 𝑧 ) |
| 37 |
35 36
|
eleqtrd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 ) |
| 38 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑧 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) ) |
| 39 |
34 37 38
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑧 ) |
| 40 |
|
simpl3r |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → 𝑧 ⊆ 𝑇 ) |
| 41 |
39 40
|
sstrd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) |
| 42 |
|
eqeq2 |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑆 = 𝑤 ↔ 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) |
| 43 |
|
sseq1 |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( 𝑤 ⊆ 𝑇 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) |
| 44 |
43
|
anbi2d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) ↔ ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) ) ) |
| 45 |
44
|
imbi1d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 46 |
42 45
|
imbi12d |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 47 |
46
|
albidv |
⊢ ( 𝑤 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) ) |
| 48 |
|
simpl1r |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 49 |
47 48 37
|
rspcdva |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ) |
| 50 |
|
eqidd |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
| 53 |
51 52 6
|
csbhypf |
⊢ ( 𝑣 = 𝑦 → ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = 𝑆 ) |
| 54 |
53
|
eqcomd |
⊢ ( 𝑣 = 𝑦 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
| 55 |
54
|
equcoms |
⊢ ( 𝑦 = 𝑣 → 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) |
| 56 |
55
|
eqeq1d |
⊢ ( 𝑦 = 𝑣 → ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ↔ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ) ) |
| 57 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
| 58 |
57 4
|
sbhypf |
⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
| 59 |
58
|
bicomd |
⊢ ( 𝑣 = 𝑦 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 60 |
59
|
equcoms |
⊢ ( 𝑦 = 𝑣 → ( 𝜒 ↔ [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 61 |
60
|
imbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ↔ ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
| 62 |
56 61
|
imbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) ↔ ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) ) |
| 63 |
62
|
spvv |
⊢ ( ∀ 𝑦 ( 𝑆 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → 𝜒 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑥 ⦌ 𝑅 → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) ) |
| 64 |
49 50 63
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → ( ( 𝜑 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ⊆ 𝑇 ) → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 65 |
33 41 64
|
mp2and |
⊢ ( ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ) → [ 𝑣 / 𝑥 ] 𝜓 ) |
| 66 |
65
|
ex |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 67 |
66
|
alrimiv |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ) |
| 68 |
53
|
eleq1d |
⊢ ( 𝑣 = 𝑦 → ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 ↔ 𝑆 ∈ 𝑅 ) ) |
| 69 |
68 58
|
imbi12d |
⊢ ( 𝑣 = 𝑦 → ( ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ( 𝑆 ∈ 𝑅 → 𝜒 ) ) ) |
| 70 |
69
|
cbvalvw |
⊢ ( ∀ 𝑣 ( ⦋ 𝑣 / 𝑥 ⦌ 𝑅 ∈ 𝑅 → [ 𝑣 / 𝑥 ] 𝜓 ) ↔ ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
| 71 |
67 70
|
sylib |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → ∀ 𝑦 ( 𝑆 ∈ 𝑅 → 𝜒 ) ) |
| 72 |
27 30 32 71 3
|
syl121anc |
⊢ ( ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) ∧ 𝑅 = 𝑧 ∧ ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) ) → 𝜓 ) |
| 73 |
72
|
3exp |
⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 74 |
73
|
alrimiv |
⊢ ( ( 𝑧 ∈ On ∧ ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 75 |
74
|
ex |
⊢ ( 𝑧 ∈ On → ( ∀ 𝑤 ∈ 𝑧 ∀ 𝑦 ( 𝑆 = 𝑤 → ( ( 𝜑 ∧ 𝑤 ⊆ 𝑇 ) → 𝜒 ) ) → ∀ 𝑥 ( 𝑅 = 𝑧 → ( ( 𝜑 ∧ 𝑧 ⊆ 𝑇 ) → 𝜓 ) ) ) ) |
| 76 |
20 26 75
|
tfis3 |
⊢ ( 𝑇 ∈ On → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 77 |
2 76
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ) |
| 78 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑅 = 𝑇 ↔ 𝑇 = 𝑇 ) ) |
| 79 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
| 80 |
78 79
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) ↔ ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
| 81 |
80
|
spcgv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑅 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜓 ) ) → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) ) |
| 82 |
1 77 81
|
sylc |
⊢ ( 𝜑 → ( 𝑇 = 𝑇 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) ) |
| 83 |
9 82
|
mpi |
⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑇 ⊆ 𝑇 ) → 𝜃 ) ) |
| 84 |
83
|
expd |
⊢ ( 𝜑 → ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) ) |
| 85 |
84
|
pm2.43i |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑇 → 𝜃 ) ) |
| 86 |
8 85
|
mpi |
⊢ ( 𝜑 → 𝜃 ) |