| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfr.1 | ⊢ 𝐹  =  recs ( 𝐺 ) | 
						
							| 2 |  | ordeleqon | ⊢ ( Ord  𝐴  ↔  ( 𝐴  ∈  On  ∨  𝐴  =  On ) ) | 
						
							| 3 |  | eqid | ⊢ { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  𝑦 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 4 | 3 | tfrlem15 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  dom  recs ( 𝐺 )  ↔  ( recs ( 𝐺 )  ↾  𝐴 )  ∈  V ) ) | 
						
							| 5 | 1 | dmeqi | ⊢ dom  𝐹  =  dom  recs ( 𝐺 ) | 
						
							| 6 | 5 | eleq2i | ⊢ ( 𝐴  ∈  dom  𝐹  ↔  𝐴  ∈  dom  recs ( 𝐺 ) ) | 
						
							| 7 | 1 | reseq1i | ⊢ ( 𝐹  ↾  𝐴 )  =  ( recs ( 𝐺 )  ↾  𝐴 ) | 
						
							| 8 | 7 | eleq1i | ⊢ ( ( 𝐹  ↾  𝐴 )  ∈  V  ↔  ( recs ( 𝐺 )  ↾  𝐴 )  ∈  V ) | 
						
							| 9 | 4 6 8 | 3bitr4g | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  dom  𝐹  ↔  ( 𝐹  ↾  𝐴 )  ∈  V ) ) | 
						
							| 10 |  | onprc | ⊢ ¬  On  ∈  V | 
						
							| 11 |  | elex | ⊢ ( On  ∈  dom  𝐹  →  On  ∈  V ) | 
						
							| 12 | 10 11 | mto | ⊢ ¬  On  ∈  dom  𝐹 | 
						
							| 13 |  | eleq1 | ⊢ ( 𝐴  =  On  →  ( 𝐴  ∈  dom  𝐹  ↔  On  ∈  dom  𝐹 ) ) | 
						
							| 14 | 12 13 | mtbiri | ⊢ ( 𝐴  =  On  →  ¬  𝐴  ∈  dom  𝐹 ) | 
						
							| 15 | 3 | tfrlem13 | ⊢ ¬  recs ( 𝐺 )  ∈  V | 
						
							| 16 | 1 15 | eqneltri | ⊢ ¬  𝐹  ∈  V | 
						
							| 17 |  | reseq2 | ⊢ ( 𝐴  =  On  →  ( 𝐹  ↾  𝐴 )  =  ( 𝐹  ↾  On ) ) | 
						
							| 18 | 1 | tfr1a | ⊢ ( Fun  𝐹  ∧  Lim  dom  𝐹 ) | 
						
							| 19 | 18 | simpli | ⊢ Fun  𝐹 | 
						
							| 20 |  | funrel | ⊢ ( Fun  𝐹  →  Rel  𝐹 ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ Rel  𝐹 | 
						
							| 22 | 18 | simpri | ⊢ Lim  dom  𝐹 | 
						
							| 23 |  | limord | ⊢ ( Lim  dom  𝐹  →  Ord  dom  𝐹 ) | 
						
							| 24 |  | ordsson | ⊢ ( Ord  dom  𝐹  →  dom  𝐹  ⊆  On ) | 
						
							| 25 | 22 23 24 | mp2b | ⊢ dom  𝐹  ⊆  On | 
						
							| 26 |  | relssres | ⊢ ( ( Rel  𝐹  ∧  dom  𝐹  ⊆  On )  →  ( 𝐹  ↾  On )  =  𝐹 ) | 
						
							| 27 | 21 25 26 | mp2an | ⊢ ( 𝐹  ↾  On )  =  𝐹 | 
						
							| 28 | 17 27 | eqtrdi | ⊢ ( 𝐴  =  On  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝐴  =  On  →  ( ( 𝐹  ↾  𝐴 )  ∈  V  ↔  𝐹  ∈  V ) ) | 
						
							| 30 | 16 29 | mtbiri | ⊢ ( 𝐴  =  On  →  ¬  ( 𝐹  ↾  𝐴 )  ∈  V ) | 
						
							| 31 | 14 30 | 2falsed | ⊢ ( 𝐴  =  On  →  ( 𝐴  ∈  dom  𝐹  ↔  ( 𝐹  ↾  𝐴 )  ∈  V ) ) | 
						
							| 32 | 9 31 | jaoi | ⊢ ( ( 𝐴  ∈  On  ∨  𝐴  =  On )  →  ( 𝐴  ∈  dom  𝐹  ↔  ( 𝐹  ↾  𝐴 )  ∈  V ) ) | 
						
							| 33 | 2 32 | sylbi | ⊢ ( Ord  𝐴  →  ( 𝐴  ∈  dom  𝐹  ↔  ( 𝐹  ↾  𝐴 )  ∈  V ) ) |