Metamath Proof Explorer


Theorem tfrlem1

Description: A technical lemma for transfinite recursion. Compare Lemma 1 of TakeutiZaring p. 47. (Contributed by NM, 23-Mar-1995) (Revised by Mario Carneiro, 24-May-2019)

Ref Expression
Hypotheses tfrlem1.1 ( 𝜑𝐴 ∈ On )
tfrlem1.2 ( 𝜑 → ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) )
tfrlem1.3 ( 𝜑 → ( Fun 𝐺𝐴 ⊆ dom 𝐺 ) )
tfrlem1.4 ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐵 ‘ ( 𝐹𝑥 ) ) )
tfrlem1.5 ( 𝜑 → ∀ 𝑥𝐴 ( 𝐺𝑥 ) = ( 𝐵 ‘ ( 𝐺𝑥 ) ) )
Assertion tfrlem1 ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )

Proof

Step Hyp Ref Expression
1 tfrlem1.1 ( 𝜑𝐴 ∈ On )
2 tfrlem1.2 ( 𝜑 → ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) )
3 tfrlem1.3 ( 𝜑 → ( Fun 𝐺𝐴 ⊆ dom 𝐺 ) )
4 tfrlem1.4 ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐵 ‘ ( 𝐹𝑥 ) ) )
5 tfrlem1.5 ( 𝜑 → ∀ 𝑥𝐴 ( 𝐺𝑥 ) = ( 𝐵 ‘ ( 𝐺𝑥 ) ) )
6 ssid 𝐴𝐴
7 sseq1 ( 𝑦 = 𝑧 → ( 𝑦𝐴𝑧𝐴 ) )
8 raleq ( 𝑦 = 𝑧 → ( ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
9 7 8 imbi12d ( 𝑦 = 𝑧 → ( ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ↔ ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
10 9 imbi2d ( 𝑦 = 𝑧 → ( ( 𝜑 → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ) )
11 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝐴𝐴𝐴 ) )
12 raleq ( 𝑦 = 𝐴 → ( ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
13 11 12 imbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ↔ ( 𝐴𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
14 13 imbi2d ( 𝑦 = 𝐴 → ( ( 𝜑 → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ↔ ( 𝜑 → ( 𝐴𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ) )
15 r19.21v ( ∀ 𝑧𝑦 ( 𝜑 → ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
16 2 ad4antr ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( Fun 𝐹𝐴 ⊆ dom 𝐹 ) )
17 16 simpld ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → Fun 𝐹 )
18 17 funfnd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝐹 Fn dom 𝐹 )
19 eloni ( 𝑦 ∈ On → Ord 𝑦 )
20 19 ad3antlr ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) → Ord 𝑦 )
21 ordelss ( ( Ord 𝑦𝑤𝑦 ) → 𝑤𝑦 )
22 20 21 sylan ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑤𝑦 )
23 simplr ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑦𝐴 )
24 22 23 sstrd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑤𝐴 )
25 16 simprd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝐴 ⊆ dom 𝐹 )
26 24 25 sstrd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑤 ⊆ dom 𝐹 )
27 fnssres ( ( 𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹 ) → ( 𝐹𝑤 ) Fn 𝑤 )
28 18 26 27 syl2anc ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐹𝑤 ) Fn 𝑤 )
29 3 ad4antr ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( Fun 𝐺𝐴 ⊆ dom 𝐺 ) )
30 29 simpld ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → Fun 𝐺 )
31 30 funfnd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝐺 Fn dom 𝐺 )
32 29 simprd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝐴 ⊆ dom 𝐺 )
33 24 32 sstrd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑤 ⊆ dom 𝐺 )
34 fnssres ( ( 𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺 ) → ( 𝐺𝑤 ) Fn 𝑤 )
35 31 33 34 syl2anc ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐺𝑤 ) Fn 𝑤 )
36 fveq2 ( 𝑥 = 𝑢 → ( 𝐹𝑥 ) = ( 𝐹𝑢 ) )
37 fveq2 ( 𝑥 = 𝑢 → ( 𝐺𝑥 ) = ( 𝐺𝑢 ) )
38 36 37 eqeq12d ( 𝑥 = 𝑢 → ( ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ( 𝐹𝑢 ) = ( 𝐺𝑢 ) ) )
39 24 adantr ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → 𝑤𝐴 )
40 sseq1 ( 𝑧 = 𝑤 → ( 𝑧𝐴𝑤𝐴 ) )
41 raleq ( 𝑧 = 𝑤 → ( ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ∀ 𝑥𝑤 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
42 40 41 imbi12d ( 𝑧 = 𝑤 → ( ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ↔ ( 𝑤𝐴 → ∀ 𝑥𝑤 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
43 simp-4r ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
44 simplr ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → 𝑤𝑦 )
45 42 43 44 rspcdva ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( 𝑤𝐴 → ∀ 𝑥𝑤 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
46 39 45 mpd ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ∀ 𝑥𝑤 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )
47 simpr ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → 𝑢𝑤 )
48 38 46 47 rspcdva ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( 𝐹𝑢 ) = ( 𝐺𝑢 ) )
49 fvres ( 𝑢𝑤 → ( ( 𝐹𝑤 ) ‘ 𝑢 ) = ( 𝐹𝑢 ) )
50 49 adantl ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( ( 𝐹𝑤 ) ‘ 𝑢 ) = ( 𝐹𝑢 ) )
51 fvres ( 𝑢𝑤 → ( ( 𝐺𝑤 ) ‘ 𝑢 ) = ( 𝐺𝑢 ) )
52 51 adantl ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( ( 𝐺𝑤 ) ‘ 𝑢 ) = ( 𝐺𝑢 ) )
53 48 50 52 3eqtr4d ( ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( ( 𝐹𝑤 ) ‘ 𝑢 ) = ( ( 𝐺𝑤 ) ‘ 𝑢 ) )
54 28 35 53 eqfnfvd ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) )
55 54 fveq2d ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐵 ‘ ( 𝐹𝑤 ) ) = ( 𝐵 ‘ ( 𝐺𝑤 ) ) )
56 fveq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
57 reseq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
58 57 fveq2d ( 𝑥 = 𝑤 → ( 𝐵 ‘ ( 𝐹𝑥 ) ) = ( 𝐵 ‘ ( 𝐹𝑤 ) ) )
59 56 58 eqeq12d ( 𝑥 = 𝑤 → ( ( 𝐹𝑥 ) = ( 𝐵 ‘ ( 𝐹𝑥 ) ) ↔ ( 𝐹𝑤 ) = ( 𝐵 ‘ ( 𝐹𝑤 ) ) ) )
60 4 ad4antr ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐵 ‘ ( 𝐹𝑥 ) ) )
61 simpr ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) → 𝑦𝐴 )
62 61 sselda ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → 𝑤𝐴 )
63 59 60 62 rspcdva ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐹𝑤 ) = ( 𝐵 ‘ ( 𝐹𝑤 ) ) )
64 fveq2 ( 𝑥 = 𝑤 → ( 𝐺𝑥 ) = ( 𝐺𝑤 ) )
65 reseq2 ( 𝑥 = 𝑤 → ( 𝐺𝑥 ) = ( 𝐺𝑤 ) )
66 65 fveq2d ( 𝑥 = 𝑤 → ( 𝐵 ‘ ( 𝐺𝑥 ) ) = ( 𝐵 ‘ ( 𝐺𝑤 ) ) )
67 64 66 eqeq12d ( 𝑥 = 𝑤 → ( ( 𝐺𝑥 ) = ( 𝐵 ‘ ( 𝐺𝑥 ) ) ↔ ( 𝐺𝑤 ) = ( 𝐵 ‘ ( 𝐺𝑤 ) ) ) )
68 5 ad4antr ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ∀ 𝑥𝐴 ( 𝐺𝑥 ) = ( 𝐵 ‘ ( 𝐺𝑥 ) ) )
69 67 68 62 rspcdva ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐺𝑤 ) = ( 𝐵 ‘ ( 𝐺𝑤 ) ) )
70 55 63 69 3eqtr4d ( ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) ∧ 𝑤𝑦 ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) )
71 70 ralrimiva ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) → ∀ 𝑤𝑦 ( 𝐹𝑤 ) = ( 𝐺𝑤 ) )
72 56 64 eqeq12d ( 𝑥 = 𝑤 → ( ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
73 72 cbvralvw ( ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ↔ ∀ 𝑤𝑦 ( 𝐹𝑤 ) = ( 𝐺𝑤 ) )
74 71 73 sylibr ( ( ( ( 𝜑𝑦 ∈ On ) ∧ ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ∧ 𝑦𝐴 ) → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )
75 74 exp31 ( ( 𝜑𝑦 ∈ On ) → ( ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
76 75 expcom ( 𝑦 ∈ On → ( 𝜑 → ( ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ) )
77 76 a2d ( 𝑦 ∈ On → ( ( 𝜑 → ∀ 𝑧𝑦 ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) → ( 𝜑 → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ) )
78 15 77 syl5bi ( 𝑦 ∈ On → ( ∀ 𝑧𝑦 ( 𝜑 → ( 𝑧𝐴 → ∀ 𝑥𝑧 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) → ( 𝜑 → ( 𝑦𝐴 → ∀ 𝑥𝑦 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) ) )
79 10 14 78 tfis3 ( 𝐴 ∈ On → ( 𝜑 → ( 𝐴𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) ) )
80 1 79 mpcom ( 𝜑 → ( 𝐴𝐴 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) ) )
81 6 80 mpi ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) = ( 𝐺𝑥 ) )