Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
2 |
|
tfrlem.3 |
⊢ 𝐶 = ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) |
3 |
|
fvex |
⊢ ( 𝐹 ‘ recs ( 𝐹 ) ) ∈ V |
4 |
|
funsng |
⊢ ( ( dom recs ( 𝐹 ) ∈ On ∧ ( 𝐹 ‘ recs ( 𝐹 ) ) ∈ V ) → Fun { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) |
5 |
3 4
|
mpan2 |
⊢ ( dom recs ( 𝐹 ) ∈ On → Fun { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) |
6 |
1
|
tfrlem7 |
⊢ Fun recs ( 𝐹 ) |
7 |
5 6
|
jctil |
⊢ ( dom recs ( 𝐹 ) ∈ On → ( Fun recs ( 𝐹 ) ∧ Fun { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) |
8 |
3
|
dmsnop |
⊢ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } = { dom recs ( 𝐹 ) } |
9 |
8
|
ineq2i |
⊢ ( dom recs ( 𝐹 ) ∩ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = ( dom recs ( 𝐹 ) ∩ { dom recs ( 𝐹 ) } ) |
10 |
1
|
tfrlem8 |
⊢ Ord dom recs ( 𝐹 ) |
11 |
|
orddisj |
⊢ ( Ord dom recs ( 𝐹 ) → ( dom recs ( 𝐹 ) ∩ { dom recs ( 𝐹 ) } ) = ∅ ) |
12 |
10 11
|
ax-mp |
⊢ ( dom recs ( 𝐹 ) ∩ { dom recs ( 𝐹 ) } ) = ∅ |
13 |
9 12
|
eqtri |
⊢ ( dom recs ( 𝐹 ) ∩ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = ∅ |
14 |
|
funun |
⊢ ( ( ( Fun recs ( 𝐹 ) ∧ Fun { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ∧ ( dom recs ( 𝐹 ) ∩ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = ∅ ) → Fun ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) |
15 |
7 13 14
|
sylancl |
⊢ ( dom recs ( 𝐹 ) ∈ On → Fun ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) |
16 |
8
|
uneq2i |
⊢ ( dom recs ( 𝐹 ) ∪ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = ( dom recs ( 𝐹 ) ∪ { dom recs ( 𝐹 ) } ) |
17 |
|
dmun |
⊢ dom ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = ( dom recs ( 𝐹 ) ∪ dom { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) |
18 |
|
df-suc |
⊢ suc dom recs ( 𝐹 ) = ( dom recs ( 𝐹 ) ∪ { dom recs ( 𝐹 ) } ) |
19 |
16 17 18
|
3eqtr4i |
⊢ dom ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = suc dom recs ( 𝐹 ) |
20 |
|
df-fn |
⊢ ( ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) Fn suc dom recs ( 𝐹 ) ↔ ( Fun ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ∧ dom ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) = suc dom recs ( 𝐹 ) ) ) |
21 |
15 19 20
|
sylanblrc |
⊢ ( dom recs ( 𝐹 ) ∈ On → ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) Fn suc dom recs ( 𝐹 ) ) |
22 |
2
|
fneq1i |
⊢ ( 𝐶 Fn suc dom recs ( 𝐹 ) ↔ ( recs ( 𝐹 ) ∪ { 〈 dom recs ( 𝐹 ) , ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) Fn suc dom recs ( 𝐹 ) ) |
23 |
21 22
|
sylibr |
⊢ ( dom recs ( 𝐹 ) ∈ On → 𝐶 Fn suc dom recs ( 𝐹 ) ) |