Metamath Proof Explorer


Theorem tfrlem3

Description: Lemma for transfinite recursion. Let A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in A for later use. (Contributed by NM, 9-Apr-1995)

Ref Expression
Hypothesis tfrlem3.1 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓𝑦 ) ) ) }
Assertion tfrlem3 𝐴 = { 𝑔 ∣ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔𝑤 ) ) ) }

Proof

Step Hyp Ref Expression
1 tfrlem3.1 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓𝑦 ) ) ) }
2 vex 𝑔 ∈ V
3 1 2 tfrlem3a ( 𝑔𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔𝑤 ) ) ) )
4 3 abbi2i 𝐴 = { 𝑔 ∣ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔𝑤 ) ) ) }